Local controllability of reaction-diffusion systems around nonnegative stationary states
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 55.

We consider a n × n nonlinear reaction-diffusion system posed on a smooth bounded domain Ω of ℝ$$. This system models reversible chemical reactions. We act on the system through m controls (1 ≤ m < n), localized in some arbitrary nonempty open subset ω of the domain Ω. We prove the local exact controllability to nonnegative (constant) stationary states in any time T > 0. A specificity of this control system is the existence of some invariant quantities in the nonlinear dynamics that prevents controllability from happening in the whole space L$$(Ω)$$. The proof relies on several ingredients. First, an adequate affine change of variables transforms the system into a cascade system with second order coupling terms. Secondly, we establish a new null-controllability result for the linearized system thanks to a spectral inequality for finite sums of eigenfunctions of the Neumann Laplacian operator, due to David Jerison, Gilles Lebeau and Luc Robbiano and precise observability inequalities for a family of finite dimensional systems. Thirdly, the source term method, introduced by Yuning Liu, Takéo Takahashi and Marius Tucsnak, is revisited in a L$$-context. Finally, an appropriate inverse mapping theorem in suitable spaces enables to go back to the nonlinear reaction-diffusion system.

DOI : 10.1051/cocv/2019033
Classification : 93B05, 35K51, 35K57, 35K58, 93C20
Mots-clés : Controllability, reaction-diffusion system, nonlinear coupling
@article{COCV_2020__26_1_A55_0,
     author = {Le Balc{\textquoteright}h, K\'evin},
     title = {Local controllability of reaction-diffusion systems around nonnegative stationary states},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019033},
     mrnumber = {4147583},
     zbl = {1446.93013},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019033/}
}
TY  - JOUR
AU  - Le Balc’h, Kévin
TI  - Local controllability of reaction-diffusion systems around nonnegative stationary states
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019033/
DO  - 10.1051/cocv/2019033
LA  - en
ID  - COCV_2020__26_1_A55_0
ER  - 
%0 Journal Article
%A Le Balc’h, Kévin
%T Local controllability of reaction-diffusion systems around nonnegative stationary states
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019033/
%R 10.1051/cocv/2019033
%G en
%F COCV_2020__26_1_A55_0
Le Balc’h, Kévin. Local controllability of reaction-diffusion systems around nonnegative stationary states. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 55. doi : 10.1051/cocv/2019033. http://www.numdam.org/articles/10.1051/cocv/2019033/

[1] F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems. J. Evol. Equ. 9 (2009) 267–291. | DOI | MR | Zbl

[2] F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. De Teresa, Recent results on the controllability of linear coupled parabolic problems: a survey. Math. Control Relat. Fields 1 (2011) 267–306. | DOI | MR | Zbl

[3] V. Barbu, Local controllability of the phase field system. Nonlinear Anal. 50 (2002) 363–372. | DOI | MR | Zbl

[4] C. Bardos and L. Tartar, Sur l’unicité rétrograde des équations paraboliques et quelques questions voisines. Arch. Ration. Mech. Anal. 50 (1973) 10–25. | DOI | MR | Zbl

[5] K. Beauchard and F. Marbach, Unexpected quadratic behaviors for the small-time local null controllability of scalar-input parabolic equations. Preprint (2017). | arXiv | MR

[6] C. Caputo, T. Goudon and A.F. Vasseur, Solutions of the 4-species quadratic reaction-diffusion system are bounded and C, in any space dimension. Preprint (2017). | arXiv | MR

[7] J.-M. Coron, Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Systems 5 (1992) 295–312. | DOI | MR | Zbl

[8] J.-M. Coron, Control and nonlinearity, Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007), p. 136. | MR | Zbl

[9] J.-M. Coron, S. Guerrero, P. Martin and L. Rosier, Homogeneity applied to the controllability of a system of parabolic equations, in Proceedings 2015 European Control Conference (ECC 2015), Linz, Austria (2015) 2470–2475. | DOI

[10] J.-M. Coron, S. Guerrero and L. Rosier, Null controllability of a parabolic system with a cubic coupling term. SIAM J. Control Optim. 48 (2010) 5629–5653. | DOI | MR | Zbl

[11] R. Denk, M. Hieber and J. Prüss, Optimal L p - L q -estimates for parabolic boundary value problems with inhomogeneous data. Math. Z. 257 (2007) 193–224. | DOI | MR | Zbl

[12] E. Fernández-Cara, A review of basic theoretical results concerning the Navier-Stokes and other similar equations. Bol. Soc. Esp. Mat. Apl. SeMA 32 (2005) 45–73. | MR | Zbl

[13] E. Fernández-Cara and S, Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45 (2006) 1399–1446. | DOI | MR | Zbl

[14] E. Fernández-Cara, J. Limaco and S.B. De Menezes, Controlling linear and semilinear systems formed by one elliptic and two parabolic PDEs with one scalar control. ESAIM: COCV 22 (2016) 1017–1039. | Numdam | MR | Zbl

[15] J. Fischer, Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems. Arch. Ration. Mech. Anal. 218 (2015) 553–587. | DOI | MR | Zbl

[16] A.V. Fursikov and O. Yu. Imanuvilov. Controllability of evolution equations, Vol. 34 of Lecture Notes Series. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1996). | MR | Zbl

[17] P. Gao, Null controllability with constraints on the state for the reaction-diffusion system. Comput. Math. Appl. 70 (2015) 776–788. | DOI | MR | Zbl

[18] M. González-Burgos and L. De Teresa, Controllability results for cascade systems of m coupled parabolic PDEs by one control force. Port. Math. 67 (2010) 91–113. | DOI | MR | Zbl

[19] O. Imanuvilov and T. Takahashi, Exact controllability of a fluid-rigid body system. J. Math. Pures Appl. 87 (2007) 408–437. | DOI | MR | Zbl

[20] D. Jerison and G. Lebeau. Nodal sets of sums of eigenfunctions, in Harmonic analysis and partial differential equations (Chicago, IL, 1996), Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL (1999) 223–239. | MR | Zbl

[21] J. Kanel, The Cauchy problem for a system of semilinear parabolic equations with balance conditions. Differentsial nye Uravneniya 20 (1984) 1753–1760. | MR | Zbl

[22] J. Kanel, Solvability in the large of a system of reaction-diffusion equations with the balance condition. Differentsial nye Uravneniya, 26 (1990) 448–458. | MR | Zbl

[23] K. Le Balc’H, Null-controllability of two species reaction-diffusion system with nonlinear coupling: a new duality method. Preprint (2018). | arXiv | MR

[24] K. Le Balc’H, Controllability of a 4 × 4 quadratic reaction–diffusion system. J. Differ. Equ. 266 (2019) 3100–3188. | DOI | MR | Zbl

[25] J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations. ESAIM: COCV 18 (2012) 712–747. | Numdam | MR | Zbl

[26] G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur. In Séminaire sur les Équations aux Dérivées Partielles, 1994–1995, pages Exp. No. VII, 13. École Polytech., Palaiseau (1995). | Numdam | MR | Zbl

[27] P. Lissy and E. Zuazua, Internal observability for coupled systems of linear partial differential equations. Preprint (2018). | HAL | MR | Zbl

[28] Y. Liu, T. Takahashi and M. Tucsnak, Single input controllability of a simplified fluid-structure interaction model. ESAIM: COCV 19 (2013) 20–42. | Numdam | MR | Zbl

[29] S. Micu and T. Takahashi, Local controllability to stationary trajectories of a Burgers equation with nonlocal viscosity. J. Differ. Equ. 264 (2018) 3664–3703. | DOI | MR | Zbl

[30] B. Perthame, Parabolic equations in biology. Growth, reaction, movement and diffusion. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, Cham (2015). | DOI | MR | Zbl

[31] M. Pierre, Global existence in reaction-diffusion systems with control of mass: a survey. Milan J. Math. 78 (2010) 417–45. | DOI | MR | Zbl

[32] T.I. Seidman, How violent are fast controls? Math. Control Signals Syst. 1 (1988) 89–95. | DOI | MR | Zbl

[33] P. Souplet, Global existence for reaction-diffusion systems with dissipation of mass and quadratic growth. J. Evolut. Equ. 18 (2018) 1713–1720. | DOI | MR | Zbl

[34] Z. Wu, J.Yin and C. Wang, Elliptic & parabolic equations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2006). | DOI | Zbl

Cité par Sources :