Numerical reconstruction of the first band(s) in an inverse Hill’s problem
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 59.

This paper concerns an inverse band structure problem for one dimensional periodic Schrödinger operators (Hill’s operators). Our goal is to find a potential for the Hill’s operator in order to reproduce as best as possible some given target bands, which may not be realisable. We recast the problem as an optimisation problem, and prove that this problem is well-posed when considering singular potentials (Borel measures).

DOI : 10.1051/cocv/2019031
Classification : 35P05, 58C40, 34K29, 34L15
Mots-clés : Inverse spectral theory, Hill’s operator, periodic Schrödinger operator, band structure, optimisation
@article{COCV_2020__26_1_A59_0,
     author = {Bakhta, Athmane and Ehrlacher, Virginie and Gontier, David},
     title = {Numerical reconstruction of the first band(s) in an inverse {Hill{\textquoteright}s} problem},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019031},
     mrnumber = {4146354},
     zbl = {1455.34021},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019031/}
}
TY  - JOUR
AU  - Bakhta, Athmane
AU  - Ehrlacher, Virginie
AU  - Gontier, David
TI  - Numerical reconstruction of the first band(s) in an inverse Hill’s problem
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019031/
DO  - 10.1051/cocv/2019031
LA  - en
ID  - COCV_2020__26_1_A59_0
ER  - 
%0 Journal Article
%A Bakhta, Athmane
%A Ehrlacher, Virginie
%A Gontier, David
%T Numerical reconstruction of the first band(s) in an inverse Hill’s problem
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019031/
%R 10.1051/cocv/2019031
%G en
%F COCV_2020__26_1_A59_0
Bakhta, Athmane; Ehrlacher, Virginie; Gontier, David. Numerical reconstruction of the first band(s) in an inverse Hill’s problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 59. doi : 10.1051/cocv/2019031. http://www.numdam.org/articles/10.1051/cocv/2019031/

[1] J.F. Bonnans, J.Ch. Gilbert, C. Lemaréchal and C. Sagastizábal, Numerical Optimization. Springer Verlag (2003). | DOI | MR | Zbl

[2] N.C. Dias, C. Jorge and J.N. Prata, One-dimensional Schrödinger operators with singular potentials: a Schwartz distributional formulation. J. Differ. Equ. 260 (2016) 6548–6580. | DOI | MR | Zbl

[3] G. Eskin, Inverse spectral problem for the Schrödinger equation with periodic vector potential. Commun. Math. Phys. 125 (1989) 263–300. | DOI | MR | Zbl

[4] J. Eskin, J. Ralston and E. Trubowiz, On isospectral periodic potential in n . I. Commun. Pure Appl. Math. 37 (1984) 647–676. | DOI | MR | Zbl

[5] J. Eskin, J. Ralston and E. Trubowiz, On isospectral periodic potential in n . II. Commun. Pure Appl. Math. 37 (1984) 715–753. | DOI | MR | Zbl

[6] L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics. American Mathematical Society (1998). | MR | Zbl

[7] G. Freiling and V. Yurko, Inverse Sturm-Liouville problems and their applications. Nova Science Publishers (2001). | MR | Zbl

[8] C.S. Gardner, J.M. Greene, M.D. Kruskal and R.M. Miura, Method for solving the korteweg-devries equation. Phys. Rev. Lett. 19 (1967) 1095. | DOI | Zbl

[9] F. Gesztesy and M. Zinchenko, On spectral theory for Schrödinger operators with strongly singular potentials. Math. Nachr. 279 (2006) 1041–1082. | DOI | MR | Zbl

[10] R.O. Hryniv and Y.V. Mykytyuk, 1-D Schrödinger operators with periodic singular potentials. Methods Funct. Anal. Topol. 7 (2001) 31–42. | MR | Zbl

[11] R.O. Hryniv and Y.V. Mykytyuk, Inverse spectral problems for Sturm-Liouville operators with singular potentials. Inverse Prob. 19 (2003) 665. | DOI | MR | Zbl

[12] R.O. Hryniv and Y.V. Mykytyuk, Inverse spectral problems for Sturm-Liouville operators with singular potentials. III. Reconstruction by three spectra. J. Math. Anal. Appl. 284 (2003) 626–646. | DOI | MR | Zbl

[13] R.O. Hryniv and Y.V. Mykytyuk, Half-inverse spectral problems for Sturm-Liouville operators with singular potentials. Inverse Probl. 20 (2004) 1423. | DOI | MR | Zbl

[14] R.O. Hryniv and Y.V. Mykytyuk, Inverse spectral problems for Sturm-Liouville operators with singular potentials. II. Reconstruction by two spectra. North-Holland Math. Stud. 197 (2004) 97–114. | DOI | MR | Zbl

[15] R.O. Hryniv and Y.V. Mykytyuk, Inverse spectral problems for Sturm-Liouville operators with singular potentials. IV. Potentials in the Sobolev space scale. Proc. Edinburgh Math. Soc. 49 (2006) 309–329. | DOI | MR | Zbl

[16] T. Kato, Schrödinger operators with singular potentials. Israel J. Math. 13 (1972) 135–148. | DOI | MR | Zbl

[17] P. Kuchment, An overview of periodic elliptic operators. Bull. Am. Math. Soc. 53 (2016) 343–414. | DOI | MR | Zbl

[18] E.H. Lieb and M. Loss, Analysis, In Vol. 4 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2001). | DOI | Zbl

[19] V. Mikhailets and V. Molyboga, One-dimensional Schrödinger operators with singular periodic potentials. Methods Funct. Anal. Topol. 14 (2008) 184–200. | MR | Zbl

[20] J. Pöschel and E. Trubowiz, Inverse spectral theory. Pure and Applied Mathematics. Academic Press (1987). | MR | Zbl

[21] M. Reed and B. Simon, Methods of modern mathematical physics. IV: Analysis of operators. Elsevier (1978). | MR | Zbl

[22] N.S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations. Commun. Appl. Math. 20 (1967) 721–747. | DOI | MR | Zbl

[23] O. Veliev, Multidimensional periodic Schrödinger operator. Perturbation theory and applications. Academic Press (2015). | MR | Zbl

[24] L. Yu, R.S. Kokenyesi, D.A Keszler and A. Zunger, Inverse design of high absorption thin-film photovoltaic materials. Adv. Energy Mater. 3 (2013) 43–48. | DOI

Cité par Sources :