Solving a Bernoulli type free boundary problem with random diffusion
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 56.

The present article is concerned with the numerical solution of a free boundary problem for an elliptic state equation with random diffusion. The domain under consideration is represented by a level set function which is evolved by the objective’s shape gradient. The state is computed by the finite element method, where the underlying triangulation is constructed by means of a marching cubes algorithm. The high-dimensional integral, which is induced by the random diffusion, is approximated by the quasi-Monte Carlo method. By numerical experiments, we validate the feasibility of the approach.

DOI : 10.1051/cocv/2019030
Classification : 35R35, 35N25, 65C05, 65N75
Mots-clés : Free boundary problem, random diffusion, shape optimization
@article{COCV_2020__26_1_A56_0,
     author = {Br\"ugger, Rahel and Croce, Roberto and Harbrecht, Helmut},
     title = {Solving a {Bernoulli} type free boundary problem with random diffusion},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019030},
     mrnumber = {4146353},
     zbl = {1453.35199},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019030/}
}
TY  - JOUR
AU  - Brügger, Rahel
AU  - Croce, Roberto
AU  - Harbrecht, Helmut
TI  - Solving a Bernoulli type free boundary problem with random diffusion
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019030/
DO  - 10.1051/cocv/2019030
LA  - en
ID  - COCV_2020__26_1_A56_0
ER  - 
%0 Journal Article
%A Brügger, Rahel
%A Croce, Roberto
%A Harbrecht, Helmut
%T Solving a Bernoulli type free boundary problem with random diffusion
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019030/
%R 10.1051/cocv/2019030
%G en
%F COCV_2020__26_1_A56_0
Brügger, Rahel; Croce, Roberto; Harbrecht, Helmut. Solving a Bernoulli type free boundary problem with random diffusion. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 56. doi : 10.1051/cocv/2019030. http://www.numdam.org/articles/10.1051/cocv/2019030/

[1] A. Acker, On the geometric form of Bernoulli configurations. Math. Meth. Appl. Sci. 10 (1988) 1–14. | DOI | MR | Zbl

[2] H.W. Alt and L.A. Caffarelli, Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325 (1981) 105–144. | MR | Zbl

[3] K. Bandara, F. Cirak, G. Of, O. Steinbach and J. Zapletal, Boundary element based multiresolution shape optimisation in electrostatics. J. Comput. Phys. 297 (2015) 584–598. | DOI | MR | Zbl

[4] A. Beurling, On free boundary problems for the Laplace equation, in Seminars on Analytic functions, I. Institute for Advanced Study, Princeton, NJ (1957) 248–263. | Zbl

[5] I. Brainman and S. Toledo, Nested-dissection orderings for sparse LU with partial pivoting. SIAM J. Matrix Anal. Appl. 23 (2002) 998–1012. | DOI | MR | Zbl

[6] R. Brügger, R. Croce and H. Harbrecht, Solving a free boundary problem with non-constant coefficients. Math. Meth. Appl. Sci. 41 (2018) 3653–3671. | DOI | MR | Zbl

[7] D. Bucur, How to prove existence in shape optimization. Control Cybernet. 34 (2005) 103–116. | MR | Zbl

[8] M. Burger, A framework for the construction of level set methods for shape optimization and reconstruction. Interfaces Free Bound. 5 (2003) 301–329. | DOI | MR | Zbl

[9] O. Colaud and A. Henrot, Numerical approximation of a free boundary problem arising in electromagnetic shaping. SIAM J. Numer. Anal. 31 (1994) 1109–1127. | DOI | MR | Zbl

[10] M. Dambrine, C. Dapogny and H. Harbrecht, Shape optimization for quadratic functionals and states with random right-hand sides. SIAM J. Control Optim. 53 (2015) 3081–3103. | DOI | MR | Zbl

[11] M. Dambrine, H. Harbrecht, M. Peters and B. Puig, On Bernoulli’s free boundary problem with a random boundary. Int. J. Uncertain. Quantif. 7 (2017) 335–353. | DOI | MR | Zbl

[12] M. Delfour and J.-P. Zolésio, Shapes and Geometries. SIAM, Philadelphia (2001). | MR | Zbl

[13] K. Eppler and H. Harbrecht, Exterior electromagnetic shaping using wavelet BEM. Math. Meth. Appl. Sci. 28 (2005) 387–405. | DOI | MR | Zbl

[14] K. Eppler and H. Harbrecht, Efficient treatment of stationary free boundary problems. Appl. Numer. Math. 56 (2006) 1326–1339. | DOI | MR | Zbl

[15] M. Flucher and M. Rumpf, Bernoulli’s free-boundary problem, qualitative theory and numerical approximation. J. Reine Angew. Math. 486 (1997) 165–204. | MR | Zbl

[16] A. George, Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10 (1973) 345–363. | DOI | MR | Zbl

[17] H. Harbrecht, A Newton method for Bernoulli’s free boundary problem in three dimensions. Computing 82 (2008) 11–30. | DOI | MR | Zbl

[18] H. Harbrecht, M. Peters and R. Schneider, On the low-rank approximation by the pivoted Cholesky decomposition. Appl. Numer. Math. 62 (2012) 428–440. | DOI | MR | Zbl

[19] H. Harbrecht, M. Peters and M. Siebenmorgen, On the quasi-Monte Carlo quadrature with Halton points for elliptic PDEs with log-normal diffusion. Math. Comput. 86 (2017) 771–797. | DOI | MR | Zbl

[20] J. Haslinger, T. Kozubek, K. Kunisch and G. Peichl, Shape optimization and fictitious domain approach for solving free boundary value problems of Bernoulli type. Comput. Optim. Appl. 26 (2003) 231–251. | DOI | MR | Zbl

[21] B. Hendrickson and E. Rothberg, Improving the run time and quality of nested dissection ordering. SIAM J. Sci. Comput. 20 (1998) 468–489. | DOI | MR | Zbl

[22] K. Ito, K. Kunisch and G. Peichl, Variational approach to shape derivatives for a class of Bernoulli problems. J. Math. Anal. Appl. 314 (2006) 126–149. | DOI | MR | Zbl

[23] R.J. Lipton, D.J. Rose and R.E. Tarjan, Generalized nested dissection. SIAM J. Numer. Anal. 16 (1979) 346–358. | DOI | MR | Zbl

[24] M. Loève, Probability theory. I+II. Graduate Texts in Mathematics 45. Springer, New York, 4th ed. (1977). | MR | Zbl

[25] W.E. Lorensen and H.E. Cline, Marching cubes: a high resolution 3d surface construction algorithm. SIGGRAPH Comput. Graph. 21 (1987) 163–169. | DOI

[26] I.M. Mitchell, The flexible, extensible and efficient toolbox of level set methods. J. Sci. Comput. 35 (2008) 300–329. | DOI | Zbl

[27] I.M. Mitchell, A toolbox of level set methods (version 1.1). Department of Computer Science, University of British Columbia, Vancouver, Canada, Tech. Rep. TR-2007-11. Available from: http://www.cs.ubc.ca/~mitchell/ToolboxLS/toolboxLS.pdf (2007).

[28] I.M. Mitchell and J.A. Templeton, A toolbox of Hamilton-Jacobi solvers for analysis of nondeterministic continuous and hybrid systems. Hybrid Systems: Computation and Control, edited by M. Morari and L. Thiele. In Vol. 3414 of Lect. Notes Comput. Sci. Springer, Berlin (2005) 480–494. | DOI | Zbl

[29] F. Murat and J. Simon, Étude de problèmes d’optimal design. Optimization Techniques, Modeling and Optimization in the Service of Man, edited by J. Céa. Vol. 40 of Lect. Notes Comput. Sci. Springer, Berlin (1976) 54–62. | MR | Zbl

[30] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods. Society for Industrial and Applied Mathematics, Philadelphia, PA (1992). | DOI | MR | Zbl

[31] A. Novruzi and J.-R. Roche, Newton’s method in shape optimisation: a three-dimensional case. BIT 40 (2000) 102–120. | DOI | MR | Zbl

[32] S. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988) 12–49. | DOI | MR | Zbl

[33] S. Osher and R. Fedkiw, Level set methods: an overview and some recent results. J. Comput. Phys. 169 (2001) 463–502. | DOI | MR | Zbl

[34] S. Osher and R. Fedkiw, Level set methods and dynamic implicit surfaces. Springer, New York (2003). | DOI | MR | Zbl

[35] D. Peng, B. Merriman, S. Osher, H. Zhao and M. Kang, A PDE-based fast local level set method. J. Comput. Phys. 155 (1999) 410–438. | DOI | MR | Zbl

[36] M. Pierre and J.-R. Roche, Numerical simulation of tridimensional electromagnetic shaping of liquid metals. Numer. Math. 65 (1993) 203–217. | DOI | MR | Zbl

[37] O. Pironneau, Optimal Shape Design for Elliptic Systems. Springer, New York (1983). | MR | Zbl

[38] J. Simon, Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. Optim. 2 (1980) 649–687. | DOI | MR | Zbl

[39] J. Sokolowski and J.-P. Zolésio, Introduction to Shape Optimization. Springer, Berlin (1992). | DOI | MR | Zbl

[40] M. Sussman, P. Smereka and S. Osher, A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114 (1994) 146–159. | DOI | Zbl

[41] T. Tiihonen, Shape optimization and trial methods for free-boundary problems. ESAIM: M2AN 31 (1997) 805–825. | DOI | Numdam | MR | Zbl

[42] R. Todor and C. Schwab, Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J. Numer. Anal. 27 (2007) 232–261. | DOI | MR | Zbl

[43] X. Wang, A constructive approach to strong tractability using quasi-Monte Carlo algorithms. J. Complex. 18 (2002) 683–701. | DOI | MR | Zbl

Cité par Sources :