Γ-limit of the cut functional on dense graph sequences
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 26.

A sequence of graphs with diverging number of nodes is a dense graph sequence if the number of edges grows approximately as for complete graphs. To each such sequence a function, called graphon, can be associated, which contains information about the asymptotic behavior of the sequence. Here we show that the problem of subdividing a large graph in communities with a minimal amount of cuts can be approached in terms of graphons and the Γ-limit of the cut functional, and discuss the resulting variational principles on some examples. Since the limit cut functional is naturally defined on Young measures, in many instances the partition problem can be expressed in terms of the probability that a node belongs to one of the communities. Our approach can be used to obtain insights into the bisection problem for large graphs, which is known to be NP-complete.

DOI : 10.1051/cocv/2019029
Classification : 49J45, 49J21, 05Cxx, 05C63
Mots-clés : Dense graph sequences, large graphs, Γ-convergence, bisection problem, nonlocal variational problems, Young measures
@article{COCV_2020__26_1_A26_0,
     author = {Braides, Andrea and Cermelli, Paolo and Dovetta, Simone},
     title = {\ensuremath{\Gamma}-limit of the cut functional on dense graph sequences},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019029},
     mrnumber = {4072631},
     zbl = {1439.05068},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019029/}
}
TY  - JOUR
AU  - Braides, Andrea
AU  - Cermelli, Paolo
AU  - Dovetta, Simone
TI  - Γ-limit of the cut functional on dense graph sequences
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019029/
DO  - 10.1051/cocv/2019029
LA  - en
ID  - COCV_2020__26_1_A26_0
ER  - 
%0 Journal Article
%A Braides, Andrea
%A Cermelli, Paolo
%A Dovetta, Simone
%T Γ-limit of the cut functional on dense graph sequences
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019029/
%R 10.1051/cocv/2019029
%G en
%F COCV_2020__26_1_A26_0
Braides, Andrea; Cermelli, Paolo; Dovetta, Simone. Γ-limit of the cut functional on dense graph sequences. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 26. doi : 10.1051/cocv/2019029. http://www.numdam.org/articles/10.1051/cocv/2019029/

[1] R. Albert and A.L. Barabási, Statistical mechanics of complex networks. Rev. Mod. Phys. 47 (2002) 47–97. | DOI | MR | Zbl

[2] R. Alicandro and M.S. Gelli, Local and non local continuum limits of Ising type energies for spin systems. SIAM J. Math. Anal. 48 (2016) 895–931. | DOI | MR | Zbl

[3] R. Alicandro, A. Braides and M. Cicalese, Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint. Netw. Heterog. Media 1 (2006) 85–107. | DOI | MR | Zbl

[4] R. Alicandro, M. Cicalese and A. Gloria, Variational description of bulk energies for bounded and unbounded spin systems. Nonlinearity 21 (2008) 1881–1910. | DOI | MR | Zbl

[5] E.J. Balder, New fundamentals of Young measure convergence. Vol. 410 of Calculus of Variations and Differential Equations, edited by A. Ioffe, S. Reich and I. Shafrir. Chapman and Hall/CRC Research Notes in Mathematics (1999) 24–48. | MR | Zbl

[6] E.J. Balder, Lectures on Young measure theory and its applications in economics. Workshop on Measure Theory and Real Analysis (Grado, 1997). Rendiconti dell’Istituto di Matematica dell’Università di Trieste 31 (suppl. 1) (2000) 1–69. | MR | Zbl

[7] E.J. Balder, On ws-convergence of product measures. Math. Oper. Res. 26 (2001) 494–518. | DOI | MR | Zbl

[8] J.M. Ball, A version of the fundamental theorem for Young measures, in PDEs and continuum models of phase transitions, in Vol. 344 of Lecture Notes in Physics (1989) 207–215. | DOI | MR | Zbl

[9] J.C. Bellido and C. Mora-Corral, Lower semicontinuity and relaxation via Young measures for nonlocal variational problems and applications to peridynamics. SIAM J. Math. Anal. 50 (2018) 779–809. | DOI | MR | Zbl

[10] I. Benjamini and O. Schramm, Recurrence of distributional limits of finite planar graphs. Electr. J. Probab. 6 (2001) 1–13. | MR | Zbl

[11] A.L. Bertozzi and Y. Van Gennip, Γ-convergence of Ginzburg-Landau graph functionals. Adv. Differ. Equ. 17 (2012) 1115–1180. | MR | Zbl

[12] C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós and K. Vesztergombi, Counting graph homomorphisms. Top. Discr. Math. Ser. Algor. Combin. 26 (2006) 315–371. | DOI | MR | Zbl

[13] C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós and K. Vesztergombi, Convergent sequences of dense graphs I. Subgraph frequencies, metric properties and testing. Adv. Math. 219 (2008) 1801–1851. | DOI | MR | Zbl

[14] C. Borgs, J.T. Chayes and L. Lovász, Moments of two-variable functions and the uniqueness of graph limits. Geometr. Funct. Anal. 19 (2010) 1597–1619. | DOI | MR | Zbl

[15] C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós and K. Vesztergombi, Limits of randomly grown graph sequences. Eur. J. Combinat. 32 (2011) 985–999. | DOI | MR | Zbl

[16] C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós and K. Vesztergombi, Convergent sequences of dense graphs II. Multiway cuts and statistical physics. Ann. Math. 176 (2012) 151–219. | DOI | MR | Zbl

[17] J. Boulanger, P. Elbau, C. Pontow and O. Scherzer, Non-Local functionals for imaging, in Fixed-Point Algorithms for Inverse Problemsin Science and Engineering, edited by H.H. Bauschke, R.S. Burachik, P.L. Combettes, V. Elser, D.R. Luke and H. Wolkowicz. Springer, New York (2011). | DOI | MR | Zbl

[18] A. Braides, Γ-convergence for beginners, Oxford University Press, Oxford (2002). | DOI | MR | Zbl

[19] A. Braides, A handbook of Γ-convergence, Vol. 3 of Handbook of Differential Equations: Stationary Partial Differential Equations (2006) 101–213. | Zbl

[20] A. Braides, A. Causin, and M. Solci, Asymptotic analysis of a ferromagnetic Ising system with “diffuse” interfacial energy. Ann. Matemat. Pura Appl. 197 (2018) 583–604. | DOI | MR | Zbl

[21] A. Braides and M.S. Gelli, From discrete to continuous variational problems: an introduction, in Topics in concentration phenomena and problem with multiple scales, edited by A. Braides and V. Chiadó Piat. Springer (2006). | DOI | MR | Zbl

[22] A. Braides and M.S. Gelli, Continuum limits of discrete systems without convexity hypothesis. Math. Mech. Solids 7 (2002) 41–66. | DOI | MR | Zbl

[23] P. Elbau, Sequential Lower Semi-Continuity of Non-Local Functionals. Preprint [math.FA] (2011). | arXiv

[24] A. Frieze and R. Kannan, Quick approximation to matrices and applications. Combinatorica 19 (1999) 175–220. | DOI | MR | Zbl

[25] M.R. Garey, D.S. Johnson and L.J. Stockmeyer, Some simplified NP-complete graph problems. Theor. Comput. Sci. 1 (1976) 237–267. | DOI | MR | Zbl

[26] S. Janson, Graphons, cut norm and distance, couplings and rearrangements. Vol. 4 of New York J. Math. Monogr. (2013). | MR | Zbl

[27] L. Lovász, Vol. 60 of Large networks and graph limits. American Mathematical Society Colloquium Publications (2012). | MR | Zbl

[28] L. Lovász and B. Szegedy, Limits of dense graph sequences. J. Combinat. Theory Ser. B 96 (2006) 933–957. | DOI | MR | Zbl

[29] L. Lovász and B. Szegedy, Szemerédi’s lemma for the analyst. Geometr. Funct. Anal. 17 (2007) 252–270. | MR | Zbl

[30] P. Pedregal, Nonlocal variational principles. Nonlin. Anal. Theory Methods Appl. 29 (1997) 1379–1392. | DOI | MR | Zbl

[31] P. Pedregal, Weak lower semicontinuity and relaxation for a class of non-local functionals. Revista Matemática Complutense 29 (2016) 485–495. | DOI | MR | Zbl

[32] R. Rossi and G. Savaré, Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Ser. 5 2 (2003) 395–431. | Numdam | MR | Zbl

[33] N.G. Trillos and D. Slepčev, Continuum limits of total variation on point clouds. Arch. Ratl. Mech. Anal. 220 (2016) 193–241. | DOI | MR | Zbl

[34] M. Valadier, A course on Young measures. Rendiconti dell’Istituto di Matematica dell’Universitá di Trieste 26 (1994) 349–394. | MR | Zbl

Cité par Sources :