Analysis of the controllability from the exterior of strong damping nonlocal wave equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 42.

We make a complete analysis of the controllability properties from the exterior of the (possible) strong damping wave equation associated with the fractional Laplace operator subject to the non-homogeneous Dirichlet type exterior condition. In the first part, we show that if 0 < s < 1, $$ (N ≥ 1) is a bounded Lipschitz domain and the parameter δ > 0, then there is no control function g such that the following system

$$

is exact or null controllable at time T > 0. In the second part, we prove that for every δ ≥ 0 and 0 < s < 1, the system is indeed approximately controllable for any T > 0 and $$, where $$ is any non-empty open set.

DOI : 10.1051/cocv/2019028
Classification : 35R11, 35S05, 35S11, 35L20, 93B05
Mots-clés : Fractional Laplace operator, wave equation, strong damping, exterior control, exact and null controllabilities, approximate controllability
@article{COCV_2020__26_1_A42_0,
     author = {Warma, Mahamadi and Zamorano, Sebasti\'an},
     title = {Analysis of the controllability from the exterior of strong damping nonlocal wave equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019028},
     mrnumber = {4124319},
     zbl = {1446.35258},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019028/}
}
TY  - JOUR
AU  - Warma, Mahamadi
AU  - Zamorano, Sebastián
TI  - Analysis of the controllability from the exterior of strong damping nonlocal wave equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019028/
DO  - 10.1051/cocv/2019028
LA  - en
ID  - COCV_2020__26_1_A42_0
ER  - 
%0 Journal Article
%A Warma, Mahamadi
%A Zamorano, Sebastián
%T Analysis of the controllability from the exterior of strong damping nonlocal wave equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019028/
%R 10.1051/cocv/2019028
%G en
%F COCV_2020__26_1_A42_0
Warma, Mahamadi; Zamorano, Sebastián. Analysis of the controllability from the exterior of strong damping nonlocal wave equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 42. doi : 10.1051/cocv/2019028. http://www.numdam.org/articles/10.1051/cocv/2019028/

[1] H. Antil, R. Khatri and M. Warma, External optimal control of nonlocal pdes. Inverse Problems, 2019. | MR | Zbl

[2] H. Antil, R.H. Nochetto and P. Venegas, Controlling the Kelvin force: basic strategies and applications to magnetic drug targeting. Optim. Eng. 19 (2018) 559–589. | DOI | MR | Zbl

[3] H. Antil, R.H. Nochetto and P. Venegas, Optimizing the Kelvin force in a moving target subdomain. Math. Models Methods Appl. Sci. 28 (2018) 95–130. | DOI | MR | Zbl

[4] W. Arendt, C.J.K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace transforms and Cauchy problems, Vol. 96 of Monographs in Mathematics. Birkhäuser/Springer Basel AG, Basel, 2nd edn. (2011). | MR | Zbl

[5] W. Arendt, A.F.M. Ter Elst and M. Warma, Fractional powers of sectorial operators via the Dirichlet-to-Neumann operator. Comm. Partial Differ. Equ. 43 (2018) 1–24. | DOI | MR

[6] U. Biccari, Internal control for non-local Schrödinger and wave equations involving the fractional Laplace operator. Preprint (2014). | arXiv | MR

[7] U. Biccari and V. Hernández-Santamaria, Controllability of a one-dimensional fractional heat equation: theoretical and numerical aspects. IMA J. Math. Control Inf. 36 (2019) 1199–1235. | DOI | MR | Zbl

[8] U. Biccari and V. Hernández-Santamaría, The Poisson equation from non-local to local. Electr. J. Differ. Equ. 13 (2018) 145. | MR | Zbl

[9] U. Biccari, M. Warma and E. Zuazua, Addendum: Local elliptic regularity for the Dirichlet fractional Laplacian. Adv. Nonlinear Stud. 17 (2017) 837–839. | DOI | MR | Zbl

[10] U. Biccari, M. Warma and E. Zuazua, Local elliptic regularity for the Dirichlet fractional Laplacian. Adv. Nonlinear Stud. 17 (2017) 387–409. | DOI | MR | Zbl

[11] K. Bogdan, K. Burdzy and Z-Q. Chen, Censored stable processes. Probab. Theory Related Fields 127 (2003) 89–152. | DOI | MR | Zbl

[12] L. Brasco, E. Parini and M. Squassina, Stability of variational eigenvalues for the fractional p-Laplacian. Discrete Contin. Dyn. Syst. 36 (2016) 1813–1845. | DOI | MR | Zbl

[13] L.A. Caffarelli, J-M. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian. J. Eur. Math. Soc. 12 (2010) 1151–1179. | DOI | MR | Zbl

[14] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. | DOI | MR | Zbl

[15] S. Dipierro, X. Ros-Oton and E. Valdinoci, Nonlocal problems with Neumann boundary conditions. Rev. Mat. Iberoam. 33 (2017) 377–416. | DOI | MR | Zbl

[16] A.A. Dubkov, B. Spagnolo and V.V. Uchaikin, Lévy flight superdiffusion: an introduction. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 18 (2008) 2649–2672. | DOI | MR | Zbl

[17] H.O. Fattorini and D.L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Rational Mech. Anal. 43 (1971) 272–292. | DOI | MR | Zbl

[18] C.G. Gal and M. Warma, Bounded solutions for nonlocal boundary value problems on Lipschitz manifolds with boundary. Adv. Nonlinear Stud. 16 (2016) 529–550. | DOI | MR | Zbl

[19] C.G. Gal and M. Warma, Fractional in time semilinear parabolic equations and applications. In Vol. 84 of Mathematiques et Applications. Springer (2020). | DOI | MR | Zbl

[20] C.G. Gal and M. Warma, Nonlocal transmission problems with fractional diffusion and boundary conditions on non-smooth interfaces. Commun. Partial Differ. Equ. 42 (2017) 579–625. | DOI | MR | Zbl

[21] C.G. Gal and M. Warma, On some degenerate non-local parabolic equation associated with the fractional p-Laplacian. Dyn. Partial Differ. Equ. 14 (2017) 47–77. | DOI | MR | Zbl

[22] T. Ghosh, M. Salo and G. Uhlmann, The Calderón problem for the fractional Schrödinger equation. Preprint (2016). | arXiv | MR

[23] R. Gorenflo, F. Mainardi and A. Vivoli, Continuous-time random walk and parametric subordination in fractional diffusion. Chaos Solitons Fractals 34 (2007) 87–103. | DOI | MR | Zbl

[24] G. Grubb, Fractional Laplacians on domains, a development of Hörmander’s theory of μ-transmission pseudodifferential operators. Adv. Math. 268 (2015) 478–528. | DOI | MR | Zbl

[25] R. Ikehata, G. Todorova and B. Yordanov, Wave equations with strong damping in Hilbert spaces. J. Differ. Equ. 254 (2013) 3352–3368. | DOI | MR | Zbl

[26] V. Keyantuo and M. Warma, On the interior approximate controllability for fractional wave equations. Discrete Contin. Dyn. Syst. 36 (2016) 3719–3739. | DOI | MR | Zbl

[27] P.A. Larkin and M. Whalen, Direct, near field acoustic testing. Technical report, SAE technical paper (1999).

[28] C. Louis-Rose and M. Warma, Approximate controllability from the exterior of space-time fractional wave equations. To appear in: Appl Math Optim (2018). | DOI | MR | Zbl

[29] Q. Lü and E. Zuazua, On the lack of controllability of fractional in time ODE and PDE. Math. Control Signals Systems 28 (2016) Art. 10, 21. | MR | Zbl

[30] A.S. Lübbe, C. Bergemann, H. Riess, F. Schriever, P. Reichardt, K. Possinger, M. Matthias, B. Dörken, F. Herrmann, R. Gürtler et al., Clinical experiences with magnetic drug targeting: a phase i study with 4’-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 56 (1996) 4686–4693.

[31] F. Mainardi, An introduction to mathematical models, in Fractional calculus and waves in linear viscoelasticity. Imperial College Press, London (2010). | DOI | MR | Zbl

[32] B.B. Mandelbrot and J.W. Van Ness Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968) 422–437. | DOI | MR | Zbl

[33] P. Martin, L. Rosier and P. Rouchon, Null controllability of the structurally damped wave equation with moving control. SIAM J. Control Optim. 51 (2013) 660–684. | DOI | MR | Zbl

[34] E. Niedermeyer and F.H.L. Da Silva, Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins (2005).

[35] X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101 (2014) 275–302. | DOI | MR | Zbl

[36] X. Ros-Oton and J. Serra, The extremal solution for the fractional Laplacian. Calc. Var. Partial Differ. Equ. 50 (2014) 723–750. | DOI | MR | Zbl

[37] X. Ros-Oton and J. Serra, The Pohozaev identity for the fractional Laplacian. Arch. Ration. Mech. Anal. 213 (2014) 587–628. | DOI | MR | Zbl

[38] L. Rosier and P. Rouchon, On the controllability of a wave equation with structural damping. Int. J. Tomogr. Stat 5 (2007) 79–84. | MR

[39] W.R. Schneider, Grey noise. In Stochastic processes, physics and geometry (Ascona and Locarno, 1988). World Sci. Publ., Teaneck, NJ (1990) 676–681. | MR

[40] R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators. Proc. Roy. Soc. Edinburgh Sect. A 144 (2014) 831–855. | DOI | MR | Zbl

[41] M. Unsworth, New developments in conventional hydrocarbon exploration with electromagnetic methods. CSEG Recorder 30 (2005) 34–38.

[42] E. Valdinoci, From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat. Apl. SeMA 49 (2009) 33–44. | MR | Zbl

[43] M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets. Potential Anal. 42 (2015) 499–547. | DOI | MR | Zbl

[44] M. Warma, The fractional Neumann and Robin type boundary conditions for the regional fractional p-Laplacian. NoDEA Nonlinear Differ. Equ. Appl. 23 (2016) 1. | DOI | MR | Zbl

[45] M. Warma, On the approximate controllability from the boundary for fractional wave equations. Appl. Anal. 96 (2017) 2291–2315. | DOI | MR | Zbl

[46] M. Warma, Approximate controllabilty from the exterior of space-time fractional diffusive equations. SIAM J. Control Optim. 57 (2019) 2037–2063. | DOI | MR | Zbl

[47] M. Warma and S. Zamorano, Null controllability from the exterior of a one-dimensional nonlocal heat equation. Preprint (2018). | arXiv | MR

[48] C.J. Weiss, B.G. Waanders and H. Antil, Fractional operators applied to geophysical electromagnetics. Preprint (2019). | arXiv

[49] R.L. Williams, I. Karacan and C.J. Hursch, Electroencephalography (EEG) of human sleep: clinical applications. John Wiley & Sons (1974).

[50] P. Zhuang and F. Liu, Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22 (2006) 87–99. | DOI | MR | Zbl

[51] E. Zuazua, Controllability of partial differential equations. 3ème cycle. Castro Urdiales, Espagne (2006).

Cité par Sources :

The work of the first author is partially supported by the Air Force Office of Scientific Research (AFOSR) under Award No: FA9550-18-1-0242. The second author is supported by the Fondecyt Postdoctoral Grant No: 3180322.