Calibrations for minimal networks in a covering space setting
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 40.

In this paper, we define a notion of calibration for an approach to the classical Steiner problem in a covering space setting and we give some explicit examples. Moreover, we introduce the notion of calibration in families: the idea is to divide the set of competitors in a suitable way, defining an appropriate (and weaker) notion of calibration. Then, calibrating the candidate minimizers in each family and comparing their perimeter, it is possible to find the minimizers of the minimization problem. Thanks to this procedure we prove the minimality of the Steiner configurations spanning the vertices of a regular hexagon and of a regular pentagon.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019024
Classification : 49Q20, 49Q05, 57M10
Mots-clés : Minimal partitions, Steiner problem, covering spaces, calibrations
@article{COCV_2020__26_1_A40_0,
     author = {Carioni, Marcello and Pluda, Alessandra},
     title = {Calibrations for minimal networks in a covering space setting},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019024},
     mrnumber = {4117802},
     zbl = {1479.49094},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019024/}
}
TY  - JOUR
AU  - Carioni, Marcello
AU  - Pluda, Alessandra
TI  - Calibrations for minimal networks in a covering space setting
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019024/
DO  - 10.1051/cocv/2019024
LA  - en
ID  - COCV_2020__26_1_A40_0
ER  - 
%0 Journal Article
%A Carioni, Marcello
%A Pluda, Alessandra
%T Calibrations for minimal networks in a covering space setting
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019024/
%R 10.1051/cocv/2019024
%G en
%F COCV_2020__26_1_A40_0
Carioni, Marcello; Pluda, Alessandra. Calibrations for minimal networks in a covering space setting. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 40. doi : 10.1051/cocv/2019024. http://www.numdam.org/articles/10.1051/cocv/2019024/

[1] G. Alberti, G. Bouchitté and G. Dal Maso The calibration method for the Mumford-Shah functional and free-discontinuity problems. Calc. Var. Partial Differ. Equ. 16 (2003) 299–333. | DOI | MR | Zbl

[2] S. Amato, G. Bellettini and M. Paolini, Constrained BV functions on covering spaces for minimal networks and Plateau’s type problems. Adv. Calc. Var. 10 (2017) 25–47. | DOI | MR | Zbl

[3] L. Ambrosio and A. Braides, Functionals defined on partitions in sets of finite perimeter. I. Integral representation and Γ-convergence. J. Math. Pures Appl. 69 (1990) 285–305. | MR | Zbl

[4] L. Ambrosio and A. Braides, Functionals defined on partitions in sets of finite perimeter. II. Semicontinuity, relaxation and homogenization. J. Math. Pures Appl. 69 (1990) 307–333. | MR | Zbl

[5] L. Ambrosio, V. Caselles, S. Masnou and J.-M. Morel, Connected components of sets of finite perimeter and applications to image processing. J. Eur. Math. Soc. (JEMS) 3 (2001) 39–92. | DOI | MR | Zbl

[6] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000). | MR | Zbl

[7] G. Bellettini, M. Paolini and F. Pasquarelli, Triple covers and a non-simply connected surface spanning an elongated tetrahedron and beating the cone. Interfaces Free Bound. 20 (2018) 407–436. | DOI | MR | Zbl

[8] G. Bellettini, M. Paolini, F. Pasquarelli and G. Scianna, Covers, soap films and BV functions. Geom. Flows 3 (2018) 57–75. | DOI | MR | Zbl

[9] G. Bellettini, M. Paolini and C. Verdi, Numerical minimization of geometrical type problems related to calculus of variations. Calcolo 27 (1990) 251–278. | DOI | MR | Zbl

[10] M. Bonafini, Convex relaxation and variational approximation of the steiner problem: theory and numerics, Geom. Flows 3 (2018) 19–27. | DOI | MR | Zbl

[11] M. Bonafini, G. Orlandi and E. Oudet, Variational approximation of functionals defined on 1-dimensional connected sets: the planar case. SIAM J. Math. Anal. 50 (2018) 6307–6332. | DOI | MR | Zbl

[12] M. Bonnivard, A. Lemenant and F. Santambrogio, Approximation of length minimization problems among compact connected sets. SIAM J. Math. Anal. 47 (2015) 1489–1529. | DOI | MR | Zbl

[13] K.A. Brakke, Numerical solution of soap film dual problems. Exp. Math. 4 (1995) 269–287. | DOI | MR | Zbl

[14] K.A. Brakke, Soap films and covering spaces. J. Geom. Anal. 5 (1995) 445–514. | DOI | MR | Zbl

[15] M. Carioni and A. Pluda, On different notions of calibrations for minimal partitions and minimal networks in ℝ2. Preprint ; To appear in Adv. Calc. Var. (2019). doi: . | arXiv | DOI | MR | Zbl

[16] A. Chambolle, L.A.D. Ferrari and B. Merlet, A phase-field approximation of the Steiner problem in dimension two. Adv. Calc. Var. 12 (2019) 157–173. | DOI | MR | Zbl

[17] R. Courant and H. Robbins, What Is Mathematics? Oxford University Press, New York (1941). | JFM | MR | Zbl

[18] D.Z. Du, F.K. Hwang and J.F. Weng, Steiner minimal trees for regular polygons. Discrete Comput. Geom. 2 (1987) 65–84. | DOI | MR | Zbl

[19] J.H.G. Fu, Tubular neighborhoods in Euclidean spaces. Duke Math. J. 52 (1985) 1025–1046. | MR | Zbl

[20] A.O. Ivanov and A.A. Tuzhilin, Minimal Networks: The Steiner Problem and Its Generalizations. CRC Press, Boca Raton FL (1994). | MR | Zbl

[21] V. Jarník and M. Kössler, On minimal graphs containing n given points. Časopis Pěst. Mat. 63 (1934) 223–235. | DOI | JFM | Zbl

[22] G. Lawlor and F. Morgan, Paired calibrations applied to soap films, immiscible fluids, and surfaces or networks minimizing other norms. Pac. J. Math. 166 (1994) 55–83. | DOI | MR | Zbl

[23] A. Lemenant and F. Santambrogio, A Modica-Mortola approximation for the Steiner problem. C. R. Math. Acad. Sci. Paris 352 (2014) 451–454. | DOI | MR | Zbl

[24] A. Marchese and A. Massaccesi, The Steiner tree problem revisited through rectifiable G-currents. Adv. Calc. Var. 9 (2016) 19–39. | DOI | MR | Zbl

[25] A. Massaccesi, E. Oudet and B. Velichkov, Numerical calibration of steiner trees. Appl. Math. Optim. 79 (2019) 69–86. | DOI | MR | Zbl

[26] J.-M. Morel and S. Solimini, Variational Methods in Image Segmentation: With Seven Image Processing Experiments. Vol. 14 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA (1995). | MR | Zbl

[27] E. Paolini and E. Stepanov, Existence and regularity results for the Steiner problem. Calc. Var. Partial Differ. Equ. 46 (2013) 837–860. | DOI | MR | Zbl

[28] I. Tamanini and G. Congedo, Density theorems for local minimizers of area-type functionals. Rend. Semin. Mat. Univ. Padova 85 (1991) 217–248. | Numdam | MR | Zbl

Cité par Sources :