In this paper, we observe how the heat equation in a noncylindrical domain can arise as the asymptotic limit of a parabolic problem in a cylindrical domain, by adding a potential that vanishes outside the limit domain. This can be seen as a parabolic version of a previous work by the first and last authors, concerning the stationary case [Alvarez-Caudevilla and Lemenant, Adv. Differ. Equ. 15 (2010) 649-688]. We provide a strong convergence result for the solution by use of energetic methods and Γ-convergence technics. Then, we establish an exponential decay estimate coming from an adaptation of an argument due to B. Simon.
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019023
Mots-clés : Parabolic problems, Gamma-convergence, energetic methods, variational methods, partial differential equations
@article{COCV_2020__26_1_A50_0, author = {\`Alvarez-Caudevilla, Pablo and Bonnivard, Matthieu and Lemenant, Antoine}, title = {Asymptotic limit of linear parabolic equations with spatio-temporal degenerated potentials}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {26}, year = {2020}, doi = {10.1051/cocv/2019023}, mrnumber = {4144107}, zbl = {1450.35132}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2019023/} }
TY - JOUR AU - Àlvarez-Caudevilla, Pablo AU - Bonnivard, Matthieu AU - Lemenant, Antoine TI - Asymptotic limit of linear parabolic equations with spatio-temporal degenerated potentials JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2020 VL - 26 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2019023/ DO - 10.1051/cocv/2019023 LA - en ID - COCV_2020__26_1_A50_0 ER -
%0 Journal Article %A Àlvarez-Caudevilla, Pablo %A Bonnivard, Matthieu %A Lemenant, Antoine %T Asymptotic limit of linear parabolic equations with spatio-temporal degenerated potentials %J ESAIM: Control, Optimisation and Calculus of Variations %D 2020 %V 26 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2019023/ %R 10.1051/cocv/2019023 %G en %F COCV_2020__26_1_A50_0
Àlvarez-Caudevilla, Pablo; Bonnivard, Matthieu; Lemenant, Antoine. Asymptotic limit of linear parabolic equations with spatio-temporal degenerated potentials. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 50. doi : 10.1051/cocv/2019023. http://www.numdam.org/articles/10.1051/cocv/2019023/
[1] Asymptotic analysis for some linear eigenvalue problems via Gamma-convergence. Adv. Differ. Equ. 15 (2010) 649–688. | MR | Zbl
and ,[2] Semiclassical analysis for highly degenerate potentials. Bull. Am. Math. Soc. 136 (2008) 665–675. | MR | Zbl
and ,[3] The maximum principle for cooperative periodic-parabolic systems and the existence of principle eigenvalues, in World Congress of Nonlinear Analysts ’92 (Tampa, FL, 1992). de Gruyter, Berlin (1996) 323–334. | DOI | MR | Zbl
and ,[4] Global existence of solutions to the incompressible Navier-Stokes-Vlasov equations in a time-dependent domain. J. Differ. Equ. 262 (2017) 1317–1340. | DOI | MR | Zbl
, and ,[5] Weak solutions of parabolic equations in non-cylindrical domains. Proc. Am. Math. Soc. 125 (1997) 1785–1792. | DOI | MR | Zbl
, and ,[6] Parabolic equations in time dependent Reifenberg domains. Adv. Math. 212 (2007) 797–818. | DOI | MR | Zbl
and ,[7] Parabolic equations in time dependent domains. J. Evol. Eqs. 17 (2017) 781–804. | DOI | MR | Zbl
, and ,[8] Periodic-parabolic eigenvalue problems with a large parameter and degeneration. J. Differ. Equ. 261 (2016) 273–295. | DOI | MR | Zbl
and ,[9] The periodic logistic equation with spatial and temporal degeneracies. Trans. Am. Math. Soc. 364 (2012) 6039–6070. | DOI | MR | Zbl
and ,[10] Partial Differential Equations. Graduate Studies in Mathematics. American Mathematical Society, RI (1998). | MR | Zbl
,[11] Point-wise growth and uniqueness of positive solutions for a class of sublinear elliptic problems where bifurcation from infinity occurs. Arch. Ration. Mech. Anal. 145 (1998) 261–289. | DOI | MR | Zbl
, , and ,[12] Periodic-Parabolic Boundary Value Problems and Positivity. Vol. 247 of Pitman Research Notes in Mathematics. Longman Scientific and Technical, Harlow (1991). | MR | Zbl
,[13] Parabolic problems with mixed variable lateral conditions: an abstract approach. J. Math. Pures Appl. 76 (1997) 321–351. | DOI | MR | Zbl
,[14] Semiclassical analysis of low lying eigenvalues. II. Tunneling. Ann. Math. 120 (1984) 89–118. | DOI | MR | Zbl
,Cité par Sources :