Asymptotic limit of linear parabolic equations with spatio-temporal degenerated potentials
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 50.

In this paper, we observe how the heat equation in a noncylindrical domain can arise as the asymptotic limit of a parabolic problem in a cylindrical domain, by adding a potential that vanishes outside the limit domain. This can be seen as a parabolic version of a previous work by the first and last authors, concerning the stationary case [Alvarez-Caudevilla and Lemenant, Adv. Differ. Equ. 15 (2010) 649-688]. We provide a strong convergence result for the solution by use of energetic methods and Γ-convergence technics. Then, we establish an exponential decay estimate coming from an adaptation of an argument due to B. Simon.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019023
Classification : 35A05, 35A15
Mots-clés : Parabolic problems, Gamma-convergence, energetic methods, variational methods, partial differential equations
@article{COCV_2020__26_1_A50_0,
     author = {\`Alvarez-Caudevilla, Pablo and Bonnivard, Matthieu and Lemenant, Antoine},
     title = {Asymptotic limit of linear parabolic equations with spatio-temporal degenerated potentials},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019023},
     mrnumber = {4144107},
     zbl = {1450.35132},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019023/}
}
TY  - JOUR
AU  - Àlvarez-Caudevilla, Pablo
AU  - Bonnivard, Matthieu
AU  - Lemenant, Antoine
TI  - Asymptotic limit of linear parabolic equations with spatio-temporal degenerated potentials
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019023/
DO  - 10.1051/cocv/2019023
LA  - en
ID  - COCV_2020__26_1_A50_0
ER  - 
%0 Journal Article
%A Àlvarez-Caudevilla, Pablo
%A Bonnivard, Matthieu
%A Lemenant, Antoine
%T Asymptotic limit of linear parabolic equations with spatio-temporal degenerated potentials
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019023/
%R 10.1051/cocv/2019023
%G en
%F COCV_2020__26_1_A50_0
Àlvarez-Caudevilla, Pablo; Bonnivard, Matthieu; Lemenant, Antoine. Asymptotic limit of linear parabolic equations with spatio-temporal degenerated potentials. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 50. doi : 10.1051/cocv/2019023. http://www.numdam.org/articles/10.1051/cocv/2019023/

[1] P. Álvarez-Caudevilla and A. Lemenant, Asymptotic analysis for some linear eigenvalue problems via Gamma-convergence. Adv. Differ. Equ. 15 (2010) 649–688. | MR | Zbl

[2] P. Álvarez-Caudevilla and J. López-Gómez, Semiclassical analysis for highly degenerate potentials. Bull. Am. Math. Soc. 136 (2008) 665–675. | MR | Zbl

[3] I. Antón and J. López-Gómez, The maximum principle for cooperative periodic-parabolic systems and the existence of principle eigenvalues, in World Congress of Nonlinear Analysts ’92 (Tampa, FL, 1992). de Gruyter, Berlin (1996) 323–334. | DOI | MR | Zbl

[4] L. Boudin, C. Grandmont and A. Moussa, Global existence of solutions to the incompressible Navier-Stokes-Vlasov equations in a time-dependent domain. J. Differ. Equ. 262 (2017) 1317–1340. | DOI | MR | Zbl

[5] R.M. Brown, W. Hu and G.M. Lieberman, Weak solutions of parabolic equations in non-cylindrical domains. Proc. Am. Math. Soc. 125 (1997) 1785–1792. | DOI | MR | Zbl

[6] S.-S. Byun and L. Wang, Parabolic equations in time dependent Reifenberg domains. Adv. Math. 212 (2007) 797–818. | DOI | MR | Zbl

[7] J. Calvo, M. Novaga and G. Orlandi, Parabolic equations in time dependent domains. J. Evol. Eqs. 17 (2017) 781–804. | DOI | MR | Zbl

[8] D. Daners and C. Thornett, Periodic-parabolic eigenvalue problems with a large parameter and degeneration. J. Differ. Equ. 261 (2016) 273–295. | DOI | MR | Zbl

[9] Y. Du and R. Peng, The periodic logistic equation with spatial and temporal degeneracies. Trans. Am. Math. Soc. 364 (2012) 6039–6070. | DOI | MR | Zbl

[10] L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics. American Mathematical Society, RI (1998). | MR | Zbl

[11] J. García-Melián, R. Gómez-Reñasco, J. López-Gómez and J.C. Sabina De Lis, Point-wise growth and uniqueness of positive solutions for a class of sublinear elliptic problems where bifurcation from infinity occurs. Arch. Ration. Mech. Anal. 145 (1998) 261–289. | DOI | MR | Zbl

[12] P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity. Vol. 247 of Pitman Research Notes in Mathematics. Longman Scientific and Technical, Harlow (1991). | MR | Zbl

[13] G. Savaré, Parabolic problems with mixed variable lateral conditions: an abstract approach. J. Math. Pures Appl. 76 (1997) 321–351. | DOI | MR | Zbl

[14] B. Simon, Semiclassical analysis of low lying eigenvalues. II. Tunneling. Ann. Math. 120 (1984) 89–118. | DOI | MR | Zbl

Cité par Sources :