We deal with the sharp asymptotic behaviour of eigenvalues of elliptic operators with varying mixed Dirichlet–Neumann boundary conditions. In case of simple eigenvalues, we compute explicitly the constant appearing in front of the expansion’s leading term. This allows inferring some remarkable consequences for Aharonov–Bohm eigenvalues when the singular part of the operator has two coalescing poles.
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019022
Mots-clés : Mixed boundary conditions, asymptotics of eigenvalues, Aharonov–Bohm eigenvalues
@article{COCV_2020__26_1_A39_0, author = {Abatangelo, L. and Felli, V. and L\'ena, C.}, title = {Eigenvalue variation under moving mixed {Dirichlet{\textendash}Neumann} boundary conditions and applications}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {26}, year = {2020}, doi = {10.1051/cocv/2019022}, mrnumber = {4116678}, zbl = {1446.35085}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2019022/} }
TY - JOUR AU - Abatangelo, L. AU - Felli, V. AU - Léna, C. TI - Eigenvalue variation under moving mixed Dirichlet–Neumann boundary conditions and applications JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2020 VL - 26 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2019022/ DO - 10.1051/cocv/2019022 LA - en ID - COCV_2020__26_1_A39_0 ER -
%0 Journal Article %A Abatangelo, L. %A Felli, V. %A Léna, C. %T Eigenvalue variation under moving mixed Dirichlet–Neumann boundary conditions and applications %J ESAIM: Control, Optimisation and Calculus of Variations %D 2020 %V 26 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2019022/ %R 10.1051/cocv/2019022 %G en %F COCV_2020__26_1_A39_0
Abatangelo, L.; Felli, V.; Léna, C. Eigenvalue variation under moving mixed Dirichlet–Neumann boundary conditions and applications. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 39. doi : 10.1051/cocv/2019022. http://www.numdam.org/articles/10.1051/cocv/2019022/
[1] Sharp asymptotic estimates for eigenvalues of Aharonov-Bohm operators with varying poles. Calc. Var. Partial Differ. Equ. 54 (2015) 3857–3903. | DOI | MR | Zbl
and ,[2] On the leading term of the eigenvalue variation for Aharonov-Bohm operators with a moving pole. SIAM J. Math. Anal. 48 (2016) 2843–2868. | DOI | MR | Zbl
and ,[3] Spectral stability under removal of small capacity sets and applications to Aharonov-Bohm operators. J. Spectr. Theory 9 (2019) 379–427. | DOI | MR | Zbl
, , and ,[4] On Aharonov-Bohm operators with two colliding poles. Adv. Nonlin. Stud. 17 (2017) 283–296. | DOI | MR | Zbl
, and ,[5] Sharp boundary behavior of eigenvalues for Aharonov-Bohm operators with varying poles. J. Funct. Anal. 273 (2017) 2428–2487. | DOI | MR | Zbl
, , and ,[6] Aharonov–Bohm Hamiltonians, isospectrality and minimal partitions. J. Phys. A 42 (2009) 185203. | DOI | MR | Zbl
, and ,[7] Aharonov-Bohm operators with varying poles. Anal. Partial Differ. Equ. 7 (2014) 1365–1395. | Zbl
, , and ,[8] Semilinear elliptic problems with mixed Dirichlet–Neumann boundary conditions. J. Funct. Anal. 199 (2003) 468–507. | DOI | MR | Zbl
and ,[9] Asymptotic expansions and unique continuation at Dirichlet–Neumann boundary junctions for planar elliptic equations. Math. Eng. 1 (2018) 84–117. | DOI | MR | Zbl
, , and ,[10] Almgren-type monotonicity methods for the classification of behaviour at corners of solutions to semilinear elliptic equations. Proc. Roy. Soc. Edinburgh Sect. A 143 (2013) 957–1019. | DOI | MR | Zbl
and ,[11] Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential. J. Eur. Math. Soc. 13 (2011) 119–174. | DOI | MR | Zbl
, and ,[12] Splitting of a multiple eigenvalue of the Dirichlet problem for the Laplace operator under singular perturbation of the boundary condition. (Russian) Mat. Zametki 52 (1992) 42–55; Translation in Math. Notes 52 (1993) 1020–1029. | MR
,[13] Difference quotients and elliptic mixed boundary value problems of second order. Indiana Univ. Math. J. 56 (2007) 1047–1082. | DOI | MR | Zbl
and ,[14] Hardy inequalities for magnetic Dirichlet forms. In Mathematical results in quantum mechanics (Prague, 1998). Vol. 108 of Oper. Theory Adv. Appl. Birkhäuser, Basel (1999) 299–305. | MR | Zbl
and ,[15] Eigenvalues variations for Aharonov-Bohm operators. J. Math. Phys. 56 (2015) 011502. | DOI | MR | Zbl
,[16] Nodal sets of magnetic Schrödinger operators of Aharonov-Bohm type and energy minimizing partitions. Indiana Univ. Math. J. 59 (2010) 1361–1403. | DOI | MR | Zbl
and ,[17] On the Aharonov–Bohm operators with varying poles: the boundary behavior of eigenvalues. Commun. Math. Phys. 339 (2015) 1101–1146. | DOI | MR | Zbl
, and ,[18] Methods of Modern Mathematical Physics. I. Functional Analysis, 2nd edn. Academic Press, New York (1980). | MR | Zbl
and ,[19] Regularity and perturbation results for mixed second order elliptic problems. Comm. Partial Differ. Equ. 22 (1997) 869–899. | DOI | MR | Zbl
,[20] An introduction to Sobolev spaces and interpolation spaces. Vol. 3 of Lecture Notes of the Unione Matematica Italiana. Springer/UMI, Berlin/Bologna (2007). | MR | Zbl
,[21] A treatise on the theory of the Bessel functions. Cambridge University Press (1944). | MR | Zbl
,Cité par Sources :