Eigenvalue variation under moving mixed Dirichlet–Neumann boundary conditions and applications
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 39.

We deal with the sharp asymptotic behaviour of eigenvalues of elliptic operators with varying mixed Dirichlet–Neumann boundary conditions. In case of simple eigenvalues, we compute explicitly the constant appearing in front of the expansion’s leading term. This allows inferring some remarkable consequences for Aharonov–Bohm eigenvalues when the singular part of the operator has two coalescing poles.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019022
Classification : 35P20, 35P15, 35J25
Mots-clés : Mixed boundary conditions, asymptotics of eigenvalues, Aharonov–Bohm eigenvalues
@article{COCV_2020__26_1_A39_0,
     author = {Abatangelo, L. and Felli, V. and L\'ena, C.},
     title = {Eigenvalue variation under moving mixed {Dirichlet{\textendash}Neumann} boundary conditions and applications},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019022},
     mrnumber = {4116678},
     zbl = {1446.35085},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019022/}
}
TY  - JOUR
AU  - Abatangelo, L.
AU  - Felli, V.
AU  - Léna, C.
TI  - Eigenvalue variation under moving mixed Dirichlet–Neumann boundary conditions and applications
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019022/
DO  - 10.1051/cocv/2019022
LA  - en
ID  - COCV_2020__26_1_A39_0
ER  - 
%0 Journal Article
%A Abatangelo, L.
%A Felli, V.
%A Léna, C.
%T Eigenvalue variation under moving mixed Dirichlet–Neumann boundary conditions and applications
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019022/
%R 10.1051/cocv/2019022
%G en
%F COCV_2020__26_1_A39_0
Abatangelo, L.; Felli, V.; Léna, C. Eigenvalue variation under moving mixed Dirichlet–Neumann boundary conditions and applications. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 39. doi : 10.1051/cocv/2019022. http://www.numdam.org/articles/10.1051/cocv/2019022/

[1] L. Abatangelo and V. Felli, Sharp asymptotic estimates for eigenvalues of Aharonov-Bohm operators with varying poles. Calc. Var. Partial Differ. Equ. 54 (2015) 3857–3903. | DOI | MR | Zbl

[2] L. Abatangelo and V. Felli, On the leading term of the eigenvalue variation for Aharonov-Bohm operators with a moving pole. SIAM J. Math. Anal. 48 (2016) 2843–2868. | DOI | MR | Zbl

[3] L. Abatangelo, V. Felli, L. Hillairet and C. Lena, Spectral stability under removal of small capacity sets and applications to Aharonov-Bohm operators. J. Spectr. Theory 9 (2019) 379–427. | DOI | MR | Zbl

[4] L. Abatangelo, V. Felli and C. Léna, On Aharonov-Bohm operators with two colliding poles. Adv. Nonlin. Stud. 17 (2017) 283–296. | DOI | MR | Zbl

[5] L. Abatangelo, V. Felli, B. Noris and M. Nys, Sharp boundary behavior of eigenvalues for Aharonov-Bohm operators with varying poles. J. Funct. Anal. 273 (2017) 2428–2487. | DOI | MR | Zbl

[6] V. Bonnaillie–Noël, B. Helffer and T. Hoffmann-Ostenhof, Aharonov–Bohm Hamiltonians, isospectrality and minimal partitions. J. Phys. A 42 (2009) 185203. | DOI | MR | Zbl

[7] V. Bonnaillie-Noël, B. Noris, M. Nys and S. Terracini, Aharonov-Bohm operators with varying poles. Anal. Partial Differ. Equ. 7 (2014) 1365–1395. | Zbl

[8] E. Colorado and I. Peral, Semilinear elliptic problems with mixed Dirichlet–Neumann boundary conditions. J. Funct. Anal. 199 (2003) 468–507. | DOI | MR | Zbl

[9] M.M. Fall, V. Felli, A. Ferrero and A. Niang, Asymptotic expansions and unique continuation at Dirichlet–Neumann boundary junctions for planar elliptic equations. Math. Eng. 1 (2018) 84–117. | DOI | MR | Zbl

[10] V. Felli and A. Ferrero, Almgren-type monotonicity methods for the classification of behaviour at corners of solutions to semilinear elliptic equations. Proc. Roy. Soc. Edinburgh Sect. A 143 (2013) 957–1019. | DOI | MR | Zbl

[11] V. Felli, A. Ferrero and S. Terracini, Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential. J. Eur. Math. Soc. 13 (2011) 119–174. | DOI | MR | Zbl

[12] R.R. Gadyl’Shin, Splitting of a multiple eigenvalue of the Dirichlet problem for the Laplace operator under singular perturbation of the boundary condition. (Russian) Mat. Zametki 52 (1992) 42–55; Translation in Math. Notes 52 (1993) 1020–1029. | MR

[13] M. Kassmann and W.R. Madych, Difference quotients and elliptic mixed boundary value problems of second order. Indiana Univ. Math. J. 56 (2007) 1047–1082. | DOI | MR | Zbl

[14] A. Laptev and T. Weidl, Hardy inequalities for magnetic Dirichlet forms. In Mathematical results in quantum mechanics (Prague, 1998). Vol. 108 of Oper. Theory Adv. Appl. Birkhäuser, Basel (1999) 299–305. | MR | Zbl

[15] C. Léna, Eigenvalues variations for Aharonov-Bohm operators. J. Math. Phys. 56 (2015) 011502. | DOI | MR | Zbl

[16] B. Noris and S. Terracini, Nodal sets of magnetic Schrödinger operators of Aharonov-Bohm type and energy minimizing partitions. Indiana Univ. Math. J. 59 (2010) 1361–1403. | DOI | MR | Zbl

[17] B. Noris, M. Nys and S. Terracini, On the Aharonov–Bohm operators with varying poles: the boundary behavior of eigenvalues. Commun. Math. Phys. 339 (2015) 1101–1146. | DOI | MR | Zbl

[18] M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, 2nd edn. Academic Press, New York (1980). | MR | Zbl

[19] G. Savaré, Regularity and perturbation results for mixed second order elliptic problems. Comm. Partial Differ. Equ. 22 (1997) 869–899. | DOI | MR | Zbl

[20] L. Tartar, An introduction to Sobolev spaces and interpolation spaces. Vol. 3 of Lecture Notes of the Unione Matematica Italiana. Springer/UMI, Berlin/Bologna (2007). | MR | Zbl

[21] G.N. Watson, A treatise on the theory of the Bessel functions. Cambridge University Press (1944). | MR | Zbl

Cité par Sources :