Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 35.

In this paper we focus on a general optimal control problem involving a dynamical system described by a nonlinear Caputo fractional differential equation of order 0 < α ≤ 1, associated to a general Bolza cost written as the sum of a standard Mayer cost and a Lagrange cost given by a Riemann-Liouville fractional integral of order β ≥ α. In addition the present work handles general control and mixed initial/final state constraints. Adapting the standard Filippov's approach based on appropriate compactness assumptions and on the convexity of the set of augmented velocities, we give an existence result for at least one optimal solution. Then, the major contribution of this paper is the statement of a Pontryagin maximum principle which provides a first-order necessary optimality condition that can be applied to the fractional framework considered here. In particular, Hamiltonian maximization condition and transversality conditions on the adjoint vector are derived. Our proof is based on the sensitivity analysis of the Caputo fractional state equation with respect to needle-like control perturbations and on Ekeland's variational principle. The paper is concluded with two illustrating examples and with a list of several perspectives for forthcoming works.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019021
Classification : 34K35, 26A33, 34A08, 49J15, 49K40, 93C15
Mots-clés : Optimal control, fractional calculus, Riemann-Liouville and Caputo operators, Filippov’s existence theorem, Pontryagin maximum principle, needle-like variations, Ekeland’s variational principle, adjoint vector, Hamiltonian system, Hamiltonian maximization condition, transversality conditions
@article{COCV_2020__26_1_A35_0,
     author = {Bergounioux, Ma{\"\i}tine and Bourdin, Lo{\"\i}c},
     title = {Pontryagin maximum principle for general {Caputo} fractional optimal control problems with {Bolza} cost and terminal constraints},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019021},
     mrnumber = {4116679},
     zbl = {1447.49035},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019021/}
}
TY  - JOUR
AU  - Bergounioux, Maïtine
AU  - Bourdin, Loïc
TI  - Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019021/
DO  - 10.1051/cocv/2019021
LA  - en
ID  - COCV_2020__26_1_A35_0
ER  - 
%0 Journal Article
%A Bergounioux, Maïtine
%A Bourdin, Loïc
%T Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019021/
%R 10.1051/cocv/2019021
%G en
%F COCV_2020__26_1_A35_0
Bergounioux, Maïtine; Bourdin, Loïc. Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 35. doi : 10.1051/cocv/2019021. http://www.numdam.org/articles/10.1051/cocv/2019021/

[1] A.A. Agrachev and Y.L. Sachkov, Control theory from the geometric viewpoint, in Vol. 87 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin (2004). | MR | Zbl

[2] O.P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272 (2002) 368–379. | DOI | MR | Zbl

[3] O.P. Agrawal, A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38 (2004) 323–337. | DOI | MR | Zbl

[4] O.P. Agrawal, O. Defterli and D. Baleanu, Fractional optimal control problems with several state and control variables. J. Vib. Control 16 (2010) 1967–1976. | DOI | MR | Zbl

[5] H.M. Ali, F.L. Pereira and S.M.A. Gama, A new approach to the Pontryagin maximum principle for nonlinear fractional optimal control problems. Math. Methods Appl. Sci. 39 (2016) 3640–3649. | DOI | MR | Zbl

[6] R. Almeida and D.F.M. Torres, Calculus of variations with fractional derivatives and fractional integrals. Appl. Math. Lett. 22 (2009) 1816–1820. | DOI | MR | Zbl

[7] R. Almeida and D.F.M. Torres, Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16 (2011) 1490–1500. | DOI | MR | Zbl

[8] R. Almeida and D.F.M. Torres, A discrete method to solve fractional optimal control problems. Nonlinear Dyn. 80 (2015) 1811–1816. | DOI | MR | Zbl

[9] D. Baleanu and S.I. Muslih, Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives. Phys. Scripta 72 (2005) 119–121. | DOI | MR | Zbl

[10] R.K. Biswas and S. Sen, Free final time fractional optimal control problems. J. Franklin Inst. 351 (2014) 941–951. | DOI | MR | Zbl

[11] J. Bonnans, The shooting approach to optimal control problems. IFAC Proc. Vol. 46 (2013) 281–292. | DOI

[12] L. Bourdin, Existence of a weak solution for fractional Euler-Lagrange equations. J. Math. Anal. Appl. 399 (2013) 239–251. | DOI | MR | Zbl

[13] L. Bourdin, Cauchy-Lipschitz theory for fractional multi-order dynamics – state-transition matrices, Duhamel formulas and duality theorems. Differ. Int. Equ. 31 (2018) 559–594. | MR | Zbl

[14] L. Bourdin, Weighted Hölder continuity of Riemann-Liouville fractional integrals – application to regularity of solutions to fractional Cauchy problems with Carathéodory dynamics. To appear in Fract. Cal. Appl. Anal. (2019). Preprint . | HAL | MR | Zbl

[15] L. Bourdin and D. Idczak, A fractional fundamental lemma and a fractional integration by parts formula—applications to critical points of Bolza functionals and to linear boundary value problems. Adv. Differ. Equ. 20 (2015) 213–232. | MR | Zbl

[16] A. Bressan and B. Piccoli, Introduction to the mathematical theory of control, in Vol. 2 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO (2007). | MR | Zbl

[17] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations. Universitext, Springer, New York (2011). | DOI | MR | Zbl

[18] A.E. Bryson, Jr. and Y.C. Ho, Applied optimal control distributed by Halsted Press [John Wiley & Sons, New York-London-Sydney, 1975]. Optimization, estimation, and control, Revised printing. Hemisphere Publishing Corp. Washington, D.C. (1975). | MR

[19] F. Bullo and A.D. Lewis, Geometric control of mechanical systems, Vol. 49 of Texts in Applied Mathematics. Springer-Verlag, New York (2005). | MR | Zbl

[20] L. Cesari, Optimization—theory and applications, Vol. 17 of Applications of Mathematics. Springer-Verlag, New York (1983). | MR | Zbl

[21] J. Cresson, Fractional embedding of differential operators and Lagrangian systems. J. Math. Phys. 48 (2007) 033504. | DOI | MR | Zbl

[22] K. Diethelm, The analysis of fractional differential equations, Vol. 2004 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (2010). | MR | Zbl

[23] I. Ekeland, On the variational principle. J. Math. Anal. Appl. 47 (1974) 324–353. | DOI | MR | Zbl

[24] H.O. Fattorini, Infinite-dimensional optimization and control theory, Vol. 62 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1999). | MR | Zbl

[25] A.F. Filippov, On some questions in the theory of optimal regulation: existence of a solution of the problem of optimal regulation in the class of bounded measurable functions. Vestnik Moskov. Univ. Ser. Mat. Meh. Astr. Fiz. Him. 1959 (1959) 25–32. | MR | Zbl

[26] G.S.F. Frederico and D.F.M. Torres, Fractional optimal control in the sense of Caputo and the fractional Noether’s theorem. Int. Math. Forum 3 (2008) 479–493. | MR | Zbl

[27] R.V. Gamkrelidze, Discovery of the maximum principle, in Mathematical events of the twentieth century. Springer, Berlin (2006) 85–99. | DOI | MR | Zbl

[28] T.L. Guo, The necessary conditions of fractional optimal control in the sense of Caputo. J. Optim. Theory Appl. 156 (2013) 115–126. | DOI | MR | Zbl

[29] M.R. Hestenes, Calculus of variations and optimal control theory. Corrected reprint ofthe 1966 original. Robert E. Krieger Publishing Co., Inc., Huntington, N.Y. (1980). | MR | Zbl

[30] R. Hilfer, Applications of Fractional Calculus in Physics, Applications of Fractional Calculus in Physics. World Scientific (2000). | DOI | MR | Zbl

[31] D.G. Hull, Optimal control theory for applications. Mechanical Engineering Series. Springer-Verlag, New York (2003). | MR | Zbl

[32] Z.D. Jelicic and N. Petrovacki, Optimality conditions and a solution scheme for fractional optimal control problems. Struct. Multidiscip. Optim. 38 (2009) 571–581. | DOI | MR | Zbl

[33] V. Jurdjevic, Geometric control theory, Vol. 52 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1997). | MR | Zbl

[34] R. Kamocki, On the existence of optimal solutions to fractional optimal control problems. Appl. Math. Comput. 235 (2014) 94–104. | MR | Zbl

[35] R. Kamocki, Pontryagin maximum principle for fractional ordinary optimal control problems. Math. Methods Appl. Sci. 37 (2014) 1668–1686. | DOI | MR | Zbl

[36] R. Kamocki and M. Majewski, Fractional linear control systems with Caputo derivative and their optimization. Optimal Control Appl. Methods 36 (2015) 953–967. | DOI | MR | Zbl

[37] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of fractional differential equations, Vol. 204 of North-Holland Mathematics Studies. Elsevier Science B.V., Amsterdam (2006). | MR | Zbl

[38] E.B. Lee and L. Markus, Foundations of optimal control theory, 2nd edn. Robert E. Krieger Publishing Co., Inc., Melbourne, FL (1986). | MR

[39] X.J. Li and J.M. Yong, Optimal control theory for infinite-dimensional systems. Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA (1995). | MR | Zbl

[40] D. Liberzon, Calculus of variations and optimal control theory. Princeton University Press, Princeton, NJ (2012). | DOI | MR | Zbl

[41] A.B. Malinowska and D.F.M. Torres, Introduction to the fractional calculus of variations. Imperial College Press, London (2012). | DOI | MR | Zbl

[42] I. Matychyn and V. Onyshchenko, Time-optimal control of fractional-order linear systems. Fract. Calc. Appl. Anal. 18 (2015) 687–696. | DOI | MR | Zbl

[43] T. Odzijewicz, A.B. Malinowska and D.F.M. Torres, Fractional variational calculus with classical and combined Caputo derivatives. Nonlinear Anal. 75 (2012) 1507–1515. | DOI | MR | Zbl

[44] I. Podlubny, Fractional differential equations, vol. 198 of Mathematics in Science and Engineering. Academic Press, Inc., San Diego, CA (1999). | MR | Zbl

[45] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The mathematical theory of optimal processes. Translated from the Russian by K. N. Trirogoff; edited by L.W. Neustadt, Interscience Publishers John Wiley & Sons, Inc., New York-London (1962). | MR

[46] S. Pooseh, R. Almeida and D.F.M. Torres, Fractional order optimal control problems with free terminal time. J. Ind. Manag. Optim. 10 (2014) 363–381. | DOI | MR | Zbl

[47] F. Riewe, Mechanics with fractional derivatives. Phys. Rev. E 55 (1997) 3581–3592. | DOI | MR

[48] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional integrals and derivatives. Gordon and Breach Science Publishers, Yverdon (1993). Theory and applications, Edited and with a foreword by S. M. Nikolskiui, Translated from the 1987 Russian original, Revised by the authors.. | MR | Zbl

[49] H. Schättler and U. Ledzewicz, Geometric optimal control, Vol. 38 of Interdisciplinary Applied Mathematics. Springer, New York (2012). | DOI | MR | Zbl

[50] R. Scherer, S.L. Kalla, Y. Tang and J. Huang, The Grünwald-Letnikov method for fractional differential equations. Comput. Math. Appl. 62 (2011) 902–917. | DOI | MR | Zbl

[51] S.P. Sethi and G.L. Thompson, Optimal control theory, 2nd edn. Kluwer Academic Publishers, Boston, MA (2000). | MR | Zbl

[52] E. Trélat, Contrôle optimal, Mathématiques Concrètes [Concrete Mathematics]. Vuibert, Paris (2005). | MR

[53] C. Tricaud and Y. Chen, Time-optimal control of systems with fractional dynamics. Int. J. Differ. Equ. 2010 (2010) 461048. | MR | Zbl

[54] R. Vinter, Optimal control, Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA (2000). | MR | Zbl

[55] D.H. Wagner, Survey of measurable selection theorems. SIAM J. Control Optim. 15 (1977) 859–903. | DOI | MR | Zbl

[56] H. Ye, J. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328 (2007) 1075–1081. | DOI | MR | Zbl

[57] S.A. Yousefi, M. Dehghan and A. Lotfi, Generalized Euler-Lagrange equations for fractional variational problems with free boundary conditions. Comput. Math. Appl. 62 (2011) 987–995. | DOI | MR | Zbl

Cité par Sources :