Hyperbolic Maxwell variational inequalities of the second kind
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 34.

We analyze a class of hyperbolic Maxwell variational inequalities of the second kind. By means of a local boundedness assumption on the subdifferential of the underlying nonlinearity, we prove a well-posedness result, where the main tools for the proof are the semigroup theory for Maxwell’s equations, the Yosida regularization and the subdifferential calculus. The second part of the paper focuses on a more general case omitting the local boundedness assumption. In this case, taking into account more regular initial data and test functions, we are able to prove a weaker existence result through the use of the minimal section operator associated with the Nemytskii operator of the governing subdifferential. Eventually, we transfer the developed well-posedness results to the case involving Faraday’s law, which in particular allows us to improve the regularity property of the electric field in the weak existence result.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019015
Classification : 35L85, 35Q60
Mots-clés : Hyperbolic Maxwell variational inequality, well-posedness, Nemytskii operator, minimal section operator, regularity
@article{COCV_2020__26_1_A34_0,
     author = {Yousept, Irwin},
     title = {Hyperbolic {Maxwell} variational inequalities of the second kind},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019015},
     mrnumber = {4116682},
     zbl = {1446.35079},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019015/}
}
TY  - JOUR
AU  - Yousept, Irwin
TI  - Hyperbolic Maxwell variational inequalities of the second kind
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019015/
DO  - 10.1051/cocv/2019015
LA  - en
ID  - COCV_2020__26_1_A34_0
ER  - 
%0 Journal Article
%A Yousept, Irwin
%T Hyperbolic Maxwell variational inequalities of the second kind
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019015/
%R 10.1051/cocv/2019015
%G en
%F COCV_2020__26_1_A34_0
Yousept, Irwin. Hyperbolic Maxwell variational inequalities of the second kind. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 34. doi : 10.1051/cocv/2019015. http://www.numdam.org/articles/10.1051/cocv/2019015/

[1] A. Alonso and A. Valli, Eddy Current Approximation of Maxwell Equations: Theory, Algorithms and Applications. Springer (2010). | MR | Zbl

[2] S. Antontsev, F. Miranda and L. Santos, A class of electromagnetic p-curl systems: blow-up and finite time extinction. Nonlinear Anal. 75 (2012) 3916–3929. | DOI | MR | Zbl

[3] J.M. Ball, Strongly continuous semigroups, weak solutions, and the variation of constants formula. Proc. Amer. Math. Soc. 64 (1977) 370–373. | MR | Zbl

[4] J.W. Barrett and L. Prigozhin, Bean’s critical-state model as the p limit of an evolutionary p-Laplacian equation. Nonlinear Anal. 42 (2000) 977–993. | DOI | MR | Zbl

[5] J.W. Barrett and L. Prigozhin, Dual formulations in critical state problems. Interfaces Free Bound. 8 (2006) 349–370. | DOI | MR | Zbl

[6] J.W. Barrett and L. Prigozhin, Existence and approximation of a mixed formulation for thin film magnetization problems in superconductivity. Math. Models Methods Appl. Sci. 24 (2014) 991–1015. | DOI | MR | Zbl

[7] C.P. Bean, Magnetization of hard superconductors. Phys. Rev. Lett. 8 (1962) 250–253. | DOI | Zbl

[8] A. Bermúdez and C. Moreno, Duality methods for solving variational inequalities. Comput. Math. Appl. 7 (1981) 43–58. | DOI | MR | Zbl

[9] A. Bermúdez, R. Rodríguez and P. Salgado, A finite element method with Lagrange multipliers for low-frequency harmonic Maxwell equations. SIAM J. Numer. Anal. 40 (2002) 1823–1849. | DOI | MR | Zbl

[10] H. Brézis and G. Stampacchia, Sur la régularité de la solution d’inéquations elliptiques. Bull. Soc. Math. France 96 (1968) 153–180. | DOI | Numdam | MR | Zbl

[11] G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics. Translated from the French by C. W. John, Grundlehren der Mathematischen Wissenschaften, 219. Springer-Verlag, Berlin-New York (1976). | DOI | MR | Zbl

[12] K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. In Vol. 194 of Graduate Texts in Mathematics. Springer-Verlag, New York (2000). | MR | Zbl

[13] G. Fichera, Sul problema elastostatico di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 34 (1963) 138–142. | MR | Zbl

[14] G. Fichera, Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei, Mem., Cl. Sci. Fis. Mat. Nat., VIII. Ser., Sez. I 7 (1964) 91–140. | MR | Zbl

[15] L. Gasiński and N.S. Papageorgiou, Nonlinear analysis. In Vol. 9 of Series in Mathematical Analysis and Applications. Chapman & Hall/CRC, Boca Raton, FL (2006). | MR | Zbl

[16] R. Glowinski, J-L. Lions and R. Trémolières, Numerical analysis of variational inequalities. Translated from the French. In Vol. 8 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam (1981). | MR | Zbl

[17] F. Jochmann, On a first-order hyperbolic system including Bean’s model for superconductors with displacement current. J. Differ. Equ. 246 (2009) 2151–2191. | DOI | MR | Zbl

[18] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications. Academic Press, New York (1980). | MR | Zbl

[19] J.-L. Lions and G. Stampacchia, Inéquations variationnelles non coercives. C. R. Acad. Sci. Paris 261 (1965) 25–27. | MR | Zbl

[20] J.-L. Lions and G. Stampacchia, Variational inequalities. Commun. Pure Appl. Math 20 (1967) 493–519. | DOI | MR | Zbl

[21] A. Milani, On a variational inequality with time dependent convex constraints for the Maxwell equations. Rend. Sem. Mat. Univ. Politec. Torino 36 (1979) 389–401. | MR | Zbl

[22] A. Milani, On a variational inequality with time dependent convex constraint for the Maxwell equations. II. Rend. Sem. Mat. Univ. Politec. Torino 43 (1985) 171–183. | MR | Zbl

[23] F. Miranda and L. Santos, A nonlinear hyperbolic Maxwell system using measure-valued functions. J. Math. Anal. Appl. 385 (2012) 491–505. | DOI | MR | Zbl

[24] F. Miranda, J.-F. Rodrigues and L. Santos, On a p-curl system arising in electromagnetism. Discrete Contin. Dyn. Syst. Ser. S 5 (2012) 605–629. | MR | Zbl

[25] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983). | DOI | MR | Zbl

[26] L. Prigozhin, The Bean model in superconductivity: variational formulation and numerical solution. J. Comput. Phys. 129 (1996) 190–200. | DOI | MR | Zbl

[27] L. Prigozhin, On the Bean critical-state model in superconductivity. Eur. J. Appl. Math. 7 (1996) 237–247. | DOI | MR | Zbl

[28] J.-F. Rodrigues, Obstacle problems in mathematical physics. In Vol. 134. North-Holland Mathematics Studies (1987). | MR | Zbl

[29] J.-F. Rodrigues and L. Santos, A parabolic quasi-variational inequality arising in a superconductivity model. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29 (2000) 153–169. | Numdam | MR | Zbl

[30] J.-F. Rodrigues and L. Santos, Quasivariational solutions for first order quasilinear equations with gradient constraint. Arch. Ration. Mech. Anal. 205 (2012) 493–514. | DOI | MR | Zbl

[31] R.E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations. In Vol. 49 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1997). | MR | Zbl

[32] I. Yousept, Optimal control of Maxwell’s equations with regularized state constraints. Comput. Optim. Appl. 52 (2012) 559–581. | DOI | MR | Zbl

[33] I. Yousept, Optimal Control of Quasilinear H(curl)-Elliptic Partial Differential Equations in Magnetostatic Field Problems. SIAM J. Control Optim. 51 (2013) 3624–3651. | DOI | MR | Zbl

[34] I. Yousept, Hyperbolic Maxwell variational inequalities for Bean’s critical-state model in type-II superconductivity. SIAM J. Numer. Anal. 55 (2017) 2444–2464. | DOI | MR | Zbl

[35] I. Yousept, Optimal control of non-smooth hyperbolic evolution Maxwell equations in type-II superconductivity. SIAM J. Control Optim. 55 (2017) 2305–2332. | DOI | MR | Zbl

Cité par Sources :

In the memory of my father Lie Yousept.