On the continuity of the trace operator in GSBV (Ω) and GSBD (Ω)
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 30.

In this paper, we present a new result of continuity for the trace operator acting on functions that might jump on a prescribed (n − 1)-dimensional set Γ, with the only hypothesis of being rectifiable and of finite measure. We also show an application of our result in relation to the variational model of elasticity with cracks, when the associated minimum problems are coupled with Dirichlet and Neumann boundary conditions.

DOI : 10.1051/cocv/2019014
Classification : 46E35, 49Q20, 26A45, 26B30
Mots-clés : Trace continuity, boundary conditions, free discontinuity problems, generalised bounded deformation, generalised bounded variation, jump set, rectifiable
@article{COCV_2020__26_1_A30_0,
     author = {Tasso, Emanuele},
     title = {On the continuity of the trace operator in {\protect\emph{GSBV}} {(\ensuremath{\Omega})} and {\protect\emph{GSBD}} {(\ensuremath{\Omega})}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019014},
     mrnumber = {4079210},
     zbl = {1453.46036},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019014/}
}
TY  - JOUR
AU  - Tasso, Emanuele
TI  - On the continuity of the trace operator in GSBV (Ω) and GSBD (Ω)
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019014/
DO  - 10.1051/cocv/2019014
LA  - en
ID  - COCV_2020__26_1_A30_0
ER  - 
%0 Journal Article
%A Tasso, Emanuele
%T On the continuity of the trace operator in GSBV (Ω) and GSBD (Ω)
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019014/
%R 10.1051/cocv/2019014
%G en
%F COCV_2020__26_1_A30_0
Tasso, Emanuele. On the continuity of the trace operator in GSBV (Ω) and GSBD (Ω). ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 30. doi : 10.1051/cocv/2019014. http://www.numdam.org/articles/10.1051/cocv/2019014/

[1] L. Ambrosio, A. Coscia and G. Dal Maso Fine properties of functions with bounded deformation. Arch. Ratl. Mech. Anal. 139 (1997) 201–238. | DOI | MR | Zbl

[2] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford University Press, Oxford (2000). | DOI | MR | Zbl

[3] D. Burago Yu and N.N. Kosovoskiĭ, The trace of B V -functions on an irregular subset. St. Petersburg Math. J. 22 (2011) 251–266. | DOI | MR | Zbl

[4] G. Dal Maso, Generalised functions of bounded deformation. J. Eur. Math. Soc. 15 (2013) 1943–1997. | DOI | MR | Zbl

[5] G. Dal Maso and C.J. Larsen, Existence for wave equations in domains with arbitrary growing cracks. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 22 (2011) 387–408. | MR | Zbl

[6] G. Dal Maso and G. Lazzaroni, Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Inst. Henri Poincaré Anal. Non Linaire 27 (2010) 257–290. | DOI | Numdam | MR | Zbl

[7] E. De Giorgi, Free discontinuity problems in calculus of variations. Frontiers in pure and applied Mathematics, a collection of papers dedicated to J.L. Lions on the occasion of his 60-th birthday. Edited by R. Dautray. North Holland (1991) 55–62. | Zbl

[8] E. De Giorgi and L. Ambrosio, Un nuovo funzionale del calcolo delle variazioni. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. 82 (1988) 199–210. | Zbl

[9] L. Evans and R.F. Gariepy, Measure theory and fine properties of functions. CRC Press, Boca Raton (1992). | MR | Zbl

[10] H. Federer, Geometric measure theory. Springer-Verlag, Berlin (1969). | MR | Zbl

[11] S. Krantz and H.R. Parks, Geometric Integration Theory. Cornerstones. Birkhäuser Boston Inc., Boston, MA (2008). | DOI | MR | Zbl

[12] V.G. Maz’Ja, Sobolev Spaces. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin (1985). | DOI | MR

[13] E. Tasso, Existence for equations of elastodynamics on domains with arbitrary growing cracks, in preparation.

[14] R. Temam, Mathematical problems in plasticity. Gauthier-Villars, Paris, 1985. Translation of Problèmes mathématiques en plasticité. Gauthier-Villars, Paris (1983). | MR | Zbl

[15] R. Temam, On the continuity of the trace of vector functions with bounded deformation. Appl. Anal. 11 (1981) 291–302. | DOI | MR | Zbl

Cité par Sources :