Viability analysis of the first-order mean field games
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 33.

In the paper, we examine the dependence of the solution of the deterministic mean field game on the initial distribution of players. The main object of study is the mapping which assigns to the initial time and the initial distribution of players the set of expected rewards of the representative player corresponding to solutions of mean field game. This mapping can be regarded as a value multifunction. We obtain the sufficient condition for a multifunction to be a value multifunction. It states that if a multifunction is viable with respect to the dynamics generated by the original mean field game, then it is a value multifunction. Furthermore, the infinitesimal variant of this condition is derived.

DOI : 10.1051/cocv/2019013
Classification : 91A10, 91A23, 49J52, 49J53, 46G05, 49J21
Mots-clés : Mean field games, value multifucntion, viability property, set-valued derivative
@article{COCV_2020__26_1_A33_0,
     author = {Averboukh, Yurii},
     title = {Viability analysis of the first-order mean field games},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019013},
     mrnumber = {4088358},
     zbl = {1437.91048},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019013/}
}
TY  - JOUR
AU  - Averboukh, Yurii
TI  - Viability analysis of the first-order mean field games
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019013/
DO  - 10.1051/cocv/2019013
LA  - en
ID  - COCV_2020__26_1_A33_0
ER  - 
%0 Journal Article
%A Averboukh, Yurii
%T Viability analysis of the first-order mean field games
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019013/
%R 10.1051/cocv/2019013
%G en
%F COCV_2020__26_1_A33_0
Averboukh, Yurii. Viability analysis of the first-order mean field games. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 33. doi : 10.1051/cocv/2019013. http://www.numdam.org/articles/10.1051/cocv/2019013/

[1] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows: in metric spaces and in the space of probability measures. Lectures in Mathematics. ETH Zurich. Birkhäuser, Basel (2005). | MR | Zbl

[2] J.-P. Aubin, Viability theory. Birkhäuser, Boston (2009). | DOI | MR | Zbl

[3] J.-P. Aubin and A. Cellina, Differential inclusions. Set-valued maps and viability theory. Springer, New York (1984). | DOI | MR | Zbl

[4] Y.V. Averboukh, A minimax approach to mean field games. Mat. Sb. 206 (2015) 3–32. | MR | Zbl

[5] M. Bardi and M. Fischer, On non-uniqueness and uniqueness of solutions in finite-horizon mean field games. ESAIM: COCV 25 (2019) 44. | Numdam | MR | Zbl

[6] A. Bensoussan, J. Frehse and P. Yam, Mean field games and mean field type control theory. Springer Briefs in Mathematics. Springer, New York (2013). | DOI | MR | Zbl

[7] A. Bensoussan, J. Frehse and S. Yam, The master equation in mean field theory. J. Math. Pures Appl. 103 (2015) 1441–1474. | DOI | MR | Zbl

[8] P. Cardaliaguet, Notes on mean-field games. https://www.ceremade.dauphine.fr/~cardaliaguet/MFG20130420.pdf (2013).

[9] P. Cardaliaguet, F. Delarue, J.-M. Lasry and P.-L. Lions, The master equation and the convergence problem in mean field games. Preprint (2015). | arXiv | Zbl

[10] R. Carmona and F. Delarue, Probabilistic analysis of mean-field games. SIAM J. Control Optim. 51 (2013) 2705–2734. | DOI | MR | Zbl

[11] R. Carmona and F. Delarue, The master equation for large population equilibriums. Stochastic Analysis and Applications, edited by D. Crisan, B. Hambly, and T. Zariphopoulou. In volume 100 of Springer Proceedings in Mathematics and Statistics Springer (2014) 77–128. | MR | Zbl

[12] R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games with Applications I. Springer, New York (2018). | MR

[13] R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games with Applications II. Springer, New York (2018). | MR

[14] R. Carmona, F. Delarue and A. Lachapelle, Control of McKean-Vlasov dynamics versus mean field games. Math. Financ. Econ. 7 (2013) 131–166. | DOI | MR | Zbl

[15] R. Carmona and D. Lacker, A probabilistic weak formulation of mean field games and applications. Ann. Appl. Probab. 25 (2015) 1189–1231. | DOI | MR | Zbl

[16] M. Fischer, On the connection between symmetric n-player games and mean field games. Ann. Appl. Probab. 27 (2017) 757–810. | DOI | MR | Zbl

[17] H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 31 (1993) 257–272. | DOI | MR | Zbl

[18] W. Gangbo, T. Nguyen and A. Tudorascu, Hamilton-Jacobi equations in the Wasserstein space. Methods Appl. Anal. 15 (2008) 155–184. | DOI | MR | Zbl

[19] W. Gangbo and A. Świȩch, Existence of a solution to an equation arising from the theory of mean field games. J. Differ. Equ. 259 (2015) 6573–6643. | DOI | MR | Zbl

[20] W. Gangbo and A. Tudorascu, On differentiability in the Wasserstein space and well-posedness for Hamilton-Jacobi equations. J. Math. Pures Appl. 125 (2019) 119–174. | DOI | MR | Zbl

[21] D.A. Gomes, L. Nurbekyan and M. Sedjro, One-dimensional forward–forward mean-field games. Appl. Math. Optim. 74 (2016) 619–642. | DOI | MR | Zbl

[22] D.A. Gomes, E.A. Pimentel and V. Voskanyan, Regularity Theory for Mean-Field Game Systems. Springer, New York (2016). | DOI | MR

[23] M. Huang, P.E. Caines and R.P. Malhamé, Large-population cost-coupled lqg problems with nonuniform agents: individual-mass behavior and decentralized Nash equilibria. IEEE Trans. Automat. Control 52 (2007) 1560–1571. | DOI | MR | Zbl

[24] M. Huang, R.P. Malhamé and P.E. Caines, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 (2006) 221–251. | DOI | MR | Zbl

[25] V. Kolokoltsov, J.J. Li and W. Yang, Mean field games and nonlinear Markov processes. Preprint (2011). | arXiv

[26] V.N. Kolokoltsov and M. Troeva, On the mean field games with common noise and the McKean-Vlasov SPDEs. Preprint (2015). | arXiv | MR | Zbl

[27] D. Lacker, Mean field games via controlled martingale problems: existence of Markovian equilibria. Stochastic Process. Appl. 125 (2015) 2856–2894. | DOI | MR | Zbl

[28] D. Lacker, A general characterization of the mean field limit for stochastic differential games. Probab. Theory Related Fields 165 (2016) 581–648. | DOI | MR | Zbl

[29] J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343 (2006) 619–625. | DOI | MR | Zbl

[30] J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343 (2006) 679–684. | DOI | MR | Zbl

[31] J.-M. Lasry and P.-L. Lions, Mean field games. Jpn. J. Math. 2 (2007) 229–260. | DOI | MR | Zbl

[32] P.-L. Lions, College de France course on mean-field games. College de France (2007–2011).

[33] A. Marigonda and M. Quincampoix, Mayer control problem with probabilistic uncertainty on initial positions. J. Differ. Equ. 264 (2018) 3212–3252. | DOI | MR | Zbl

[34] S. Mayorga, Short time solution to the master equation of a first order mean field game system. Preprint (2018). | arXiv | MR | Zbl

[35] A.I. Subbotin, Generalized solutions of first-order PDEs. The dynamical perspective. Birkhäuser, Boston (1995). | DOI | MR | Zbl

[36] A. Sznitman, Topics in propagation of chaos. Vol. 1464 of Lecture Notes in Mathematics. Springer, Berlin/Heidelberg (1991), pp. 165–251. | DOI | MR | Zbl

[37] R. Vinter and P. Wolenski, Hamilton-Jacobi theory for optimal control problems with data measurable in time. SIAM J. Control Optim. 28 (1990) 1404–1419. | DOI | MR | Zbl

[38] J. Warga, Optimal control of differential and functional equations. Academic Press, New York (1972). | MR | Zbl

[39] P.R. Wolenski, Hamilton-Jacobi theory for the hereditary control problems. Nonlinear Anal. 22 (1994) 875–894. | DOI | MR | Zbl

Cité par Sources :

The research is supported by RFBR (grant N 17-01-00069).