In this paper, we study a bilinear optimal control problem associated to a chemo-repulsion model with linear production term in a bidimensional domain. The existence, uniqueness and regularity of strong solutions of this model are deduced, proving the existence of a global optimal solution. Afterwards, we derive first-order optimality conditions by using a Lagrange multipliers theorem.
Mots-clés : Chemorepulsion-production model, strong solutions, bilinear control, optimality conditions
@article{COCV_2020__26_1_A29_0, author = {Guill\'en-Gonz\'alez, Francisco and Mallea-Zepeda, Exequiel and Rodr{\'\i}guez-Bellido, Mar{\'\i}a \'Angeles}, title = {Optimal bilinear control problem related to a chemo-repulsion system in {2D} domains}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {26}, year = {2020}, doi = {10.1051/cocv/2019012}, mrnumber = {4079209}, zbl = {1442.35189}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2019012/} }
TY - JOUR AU - Guillén-González, Francisco AU - Mallea-Zepeda, Exequiel AU - Rodríguez-Bellido, María Ángeles TI - Optimal bilinear control problem related to a chemo-repulsion system in 2D domains JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2020 VL - 26 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2019012/ DO - 10.1051/cocv/2019012 LA - en ID - COCV_2020__26_1_A29_0 ER -
%0 Journal Article %A Guillén-González, Francisco %A Mallea-Zepeda, Exequiel %A Rodríguez-Bellido, María Ángeles %T Optimal bilinear control problem related to a chemo-repulsion system in 2D domains %J ESAIM: Control, Optimisation and Calculus of Variations %D 2020 %V 26 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2019012/ %R 10.1051/cocv/2019012 %G en %F COCV_2020__26_1_A29_0
Guillén-González, Francisco; Mallea-Zepeda, Exequiel; Rodríguez-Bellido, María Ángeles. Optimal bilinear control problem related to a chemo-repulsion system in 2D domains. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 29. doi : 10.1051/cocv/2019012. http://www.numdam.org/articles/10.1051/cocv/2019012/
[1] Mixed boundary value problems for steady-state magnetohydrodynamic equations of viscous incompressible fluids. Comp. Math. Math. Phys. 56 (2016) 1426–1439. | DOI | MR | Zbl
,[2] Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. Function spaces, differential operators and nonlinear analysis. Teubner-Texte Math. (1993) 9–126. | MR | Zbl
,[3] Multigrid optimization methods for the optimal control of convection diffusion problems with bilinear control. J. Optim. Theory Appl. 168 (2016) 510–533. | DOI | MR | Zbl
, . ,[4] Stabilization by space controls for a class of semilinear parabolic equations. SIAM J. Control Optim. 55 (2017) 512–532. | DOI | MR | Zbl
and ,[5] A uniform controllability for the Keller-Segel system. Asymptot. Anal. 92 (2015) 318–338. | MR | Zbl
and ,[6] A controllability result for a chemotaxis-fluid model. J. Diff. Equ. 262 (2017) 4863–4905. | DOI | MR | Zbl
and ,[7] Global existence and convergence to steady states in a chemorepulsion system. Parabolic and Navier-Stokes equations. Part 1. Banach Center Publ., 81. Banach Center Publ., 81, Part 1, Polish Acad. Sci. Inst. Math., Warsaw. (2008) 105–117. | MR | Zbl
, and ,[8] Existence of solutions and optimal control for a model of tissue invasion by solid tumours. J. Math. Anal. Appl. 421 (2015) 842–877. | DOI | MR | Zbl
and ,[9] Singular limits in thermodynamics of viscous fluids. Advances in Mathematical Fluid Mechanics. Birkhäuser Verlag, Basel (2009). | MR | Zbl
and ,[10] Optimal control of a chemotaxis system. Quart. Appl. Math. 61 (2003) 193–211. | DOI | MR | Zbl
and ,[11] An augmented Lagrange method for elliptic state constrained optimal control problems. Comp. Optim. Appl. 69 (2018) 857–880. | DOI | MR | Zbl
and ,[12] Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970) 399–415. | DOI | MR | Zbl
and ,[13] Pontyagin’s principle for optimal control problem governed by 3D Navier-Stokes equations. J. Optim. Theory Appl. 173 (2017) 30–55. | DOI | MR | Zbl
, and ,[14] A priori error estimates for elliptic optimal control problems with bilinear state equation. J. Comp. Appl. Mech. 230 (2009) 781–802. | MR | Zbl
and ,[15] Optimal control of the undamped linear wave equation with measure valued controls. SIAM J. Control Optim. 54 (2016) 1212–1244. | DOI | MR | Zbl
, and ,[16] Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). | MR | Zbl
,[17] A boundary control problem for micropolar fluids. J. Optim. Theory Appl. 169 (2016) 349–69. | DOI | MR | Zbl
, and ,[18] Les méthodes directes en théorie des equations elliptiques. Editeurs Academia, Prague (1967). | MR | Zbl
,[19] On a distributed control problem for a coupled chemotaxis-fluid model. Discrete Cotin. Dyn. Syst. B. 23 (2018) 557–517. | MR | Zbl
, and ,[20] On the Rayleigh-Bénard-Marangoni system and a related optimal control problem. Comp. Math. Appl. 74 (2017) 2969–2991. | DOI | MR | Zbl
and ,[21] Boundary control of chemotaxis reaction diffusion system. Honam Math. J. 30 (2008) 469–478. | DOI | MR | Zbl
,[22] Optimal control of Keller-Segel equations. J. Math. Anal. Appl. 256 (2001) 45–66. | DOI | MR | Zbl
and ,[23] $L^p ( O , T ; B )$. Ann. Mat. Pura Appl. 146 (1987) 65–96. | DOI | MR | Zbl
, Compacts sets in the space[24] Optimal control of the primitive equations of the ocean with state constraints. Nonlinear Anal. 73 (2010) 634–649. | DOI | MR | Zbl
[25] Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensivity. Discrete Cotin. Dyn. Syst. B. 18 (2013) 2705–2722. | MR | Zbl
,[26] Interpolation theory, function spaces, differential operators. VEB Deutscher Verlag de Wissenschaften, Berlin (1978). | MR | Zbl
,[27] Multigrid optimization methods for linear and bilinear elliptic optimal control problems. Computing 82 (2008) 31–52. | DOI | MR | Zbl
and ,[28] Optimal control of 3-dimensional Navier-Stokes equations with state constraints. SIAM J. Control Optim. 41 (2002) 583–606. | DOI | MR | Zbl
,[29] Optimal control problem for Cahn-Hilliard equations with state constraints. J. Dyn. Control Syst. 21 (2015) 257–272. | DOI | MR | Zbl
and ,[30] Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5 (1979) 49–62. | DOI | MR | Zbl
and ,Cité par Sources :