Optimal bilinear control problem related to a chemo-repulsion system in 2D domains
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 29.

In this paper, we study a bilinear optimal control problem associated to a chemo-repulsion model with linear production term in a bidimensional domain. The existence, uniqueness and regularity of strong solutions of this model are deduced, proving the existence of a global optimal solution. Afterwards, we derive first-order optimality conditions by using a Lagrange multipliers theorem.

DOI : 10.1051/cocv/2019012
Classification : 35K51, 35Q92, 49J20, 49K20
Mots-clés : Chemorepulsion-production model, strong solutions, bilinear control, optimality conditions
@article{COCV_2020__26_1_A29_0,
     author = {Guill\'en-Gonz\'alez, Francisco and Mallea-Zepeda, Exequiel and Rodr{\'\i}guez-Bellido, Mar{\'\i}a \'Angeles},
     title = {Optimal bilinear control problem related to a chemo-repulsion system in {2D} domains},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019012},
     mrnumber = {4079209},
     zbl = {1442.35189},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019012/}
}
TY  - JOUR
AU  - Guillén-González, Francisco
AU  - Mallea-Zepeda, Exequiel
AU  - Rodríguez-Bellido, María Ángeles
TI  - Optimal bilinear control problem related to a chemo-repulsion system in 2D domains
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019012/
DO  - 10.1051/cocv/2019012
LA  - en
ID  - COCV_2020__26_1_A29_0
ER  - 
%0 Journal Article
%A Guillén-González, Francisco
%A Mallea-Zepeda, Exequiel
%A Rodríguez-Bellido, María Ángeles
%T Optimal bilinear control problem related to a chemo-repulsion system in 2D domains
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019012/
%R 10.1051/cocv/2019012
%G en
%F COCV_2020__26_1_A29_0
Guillén-González, Francisco; Mallea-Zepeda, Exequiel; Rodríguez-Bellido, María Ángeles. Optimal bilinear control problem related to a chemo-repulsion system in 2D domains. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 29. doi : 10.1051/cocv/2019012. http://www.numdam.org/articles/10.1051/cocv/2019012/

[1] G.V. Alekseev, Mixed boundary value problems for steady-state magnetohydrodynamic equations of viscous incompressible fluids. Comp. Math. Math. Phys. 56 (2016) 1426–1439. | DOI | MR | Zbl

[2] H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. Function spaces, differential operators and nonlinear analysis. Teubner-Texte Math. (1993) 9–126. | MR | Zbl

[3] A. Borzì, E.-J. Park. M. Vallejos Lass, Multigrid optimization methods for the optimal control of convection diffusion problems with bilinear control. J. Optim. Theory Appl. 168 (2016) 510–533. | DOI | MR | Zbl

[4] E. Casas and K. Kunisch, Stabilization by space controls for a class of semilinear parabolic equations. SIAM J. Control Optim. 55 (2017) 512–532. | DOI | MR | Zbl

[5] F.W. Chaves-Silva and S. Guerrero, A uniform controllability for the Keller-Segel system. Asymptot. Anal. 92 (2015) 318–338. | MR | Zbl

[6] F.W. Chaves-Silva and S. Guerrero, A controllability result for a chemotaxis-fluid model. J. Diff. Equ. 262 (2017) 4863–4905. | DOI | MR | Zbl

[7] T. Cieślak, P. Laurençot and C. Morales-Rodrigo, Global existence and convergence to steady states in a chemorepulsion system. Parabolic and Navier-Stokes equations. Part 1. Banach Center Publ., 81. Banach Center Publ., 81, Part 1, Polish Acad. Sci. Inst. Math., Warsaw. (2008) 105–117. | MR | Zbl

[8] A.L.A. De Araujo and P.M.D. De Magalhães, Existence of solutions and optimal control for a model of tissue invasion by solid tumours. J. Math. Anal. Appl. 421 (2015) 842–877. | DOI | MR | Zbl

[9] E. Feireisl and A. Novotný, Singular limits in thermodynamics of viscous fluids. Advances in Mathematical Fluid Mechanics. Birkhäuser Verlag, Basel (2009). | MR | Zbl

[10] K.R. Fister and C.M. Mccarthy, Optimal control of a chemotaxis system. Quart. Appl. Math. 61 (2003) 193–211. | DOI | MR | Zbl

[11] V. Karl and D. Wachsmuth, An augmented Lagrange method for elliptic state constrained optimal control problems. Comp. Optim. Appl. 69 (2018) 857–880. | DOI | MR | Zbl

[12] E.F. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970) 399–415. | DOI | MR | Zbl

[13] B.T. Kien, A. Rösch and D. Wachsmuth, Pontyagin’s principle for optimal control problem governed by 3D Navier-Stokes equations. J. Optim. Theory Appl. 173 (2017) 30–55. | DOI | MR | Zbl

[14] A. Kröner and B. Vexler, A priori error estimates for elliptic optimal control problems with bilinear state equation. J. Comp. Appl. Mech. 230 (2009) 781–802. | MR | Zbl

[15] K. Kunisch, P. Trautmann and B. Vexler, Optimal control of the undamped linear wave equation with measure valued controls. SIAM J. Control Optim. 54 (2016) 1212–1244. | DOI | MR | Zbl

[16] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). | MR | Zbl

[17] E. Mallea-Zepeda, E. Ortega-Torres and E.J. Villamizar-Roa, A boundary control problem for micropolar fluids. J. Optim. Theory Appl. 169 (2016) 349–69. | DOI | MR | Zbl

[18] L. Necas, Les méthodes directes en théorie des equations elliptiques. Editeurs Academia, Prague (1967). | MR | Zbl

[19] M.A. Rodríguez-Bellido, D.A. Rueda-Gómez and E.J. Villamizar-Roa, On a distributed control problem for a coupled chemotaxis-fluid model. Discrete Cotin. Dyn. Syst. B. 23 (2018) 557–517. | MR | Zbl

[20] D.A. Rueda-Gómez and E.J. Villamizar-Roa, On the Rayleigh-Bénard-Marangoni system and a related optimal control problem. Comp. Math. Appl. 74 (2017) 2969–2991. | DOI | MR | Zbl

[21] S.-U. Ryu, Boundary control of chemotaxis reaction diffusion system. Honam Math. J. 30 (2008) 469–478. | DOI | MR | Zbl

[22] S.-U. Ryu and A. Yagi, Optimal control of Keller-Segel equations. J. Math. Anal. Appl. 256 (2001) 45–66. | DOI | MR | Zbl

[23] J. Simon, Compacts sets in the space $L^p ( O , T ; B )$. Ann. Mat. Pura Appl. 146 (1987) 65–96. | DOI | MR | Zbl

[24] T. Tachim Medjo Optimal control of the primitive equations of the ocean with state constraints. Nonlinear Anal. 73 (2010) 634–649. | DOI | MR | Zbl

[25] Y. Tao, Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensivity. Discrete Cotin. Dyn. Syst. B. 18 (2013) 2705–2722. | MR | Zbl

[26] H. Triebel, Interpolation theory, function spaces, differential operators. VEB Deutscher Verlag de Wissenschaften, Berlin (1978). | MR | Zbl

[27] M. Vallejos and A. Borzì, Multigrid optimization methods for linear and bilinear elliptic optimal control problems. Computing 82 (2008) 31–52. | DOI | MR | Zbl

[28] G. Wang, Optimal control of 3-dimensional Navier-Stokes equations with state constraints. SIAM J. Control Optim. 41 (2002) 583–606. | DOI | MR | Zbl

[29] J. Zhen and Y. Wang, Optimal control problem for Cahn-Hilliard equations with state constraints. J. Dyn. Control Syst. 21 (2015) 257–272. | DOI | MR | Zbl

[30] J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5 (1979) 49–62. | DOI | MR | Zbl

Cité par Sources :