Thresholding gradient methods in Hilbert spaces: support identification and linear convergence
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 28.

We study the 1 regularized least squares optimization problem in a separable Hilbert space. We show that the iterative soft-thresholding algorithm (ISTA) converges linearly, without making any assumption on the linear operator into play or on the problem. The result is obtained combining two key concepts: the notion of extended support, a finite set containing the support, and the notion of conditioning over finite-dimensional sets. We prove that ISTA identifies the solution extended support after a finite number of iterations, and we derive linear convergence from the conditioning property, which is always satisfied for 1 regularized least squares problems. Our analysis extends to the entire class of thresholding gradient algorithms, for which we provide a conceptually new proof of strong convergence, as well as convergence rates.

DOI : 10.1051/cocv/2019011
Classification : 49M29, 65J10, 65J15, 65J20, 65J22, 65K15, 90C25, 90C46
Mots-clés : Forward–Backward method, support identification, conditioning, convergence rates
@article{COCV_2020__26_1_A28_0,
     author = {Garrigos, Guillaume and Rosasco, Lorenzo and Villa, Silvia},
     title = {Thresholding gradient methods in {Hilbert} spaces: support identification and linear convergence},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019011},
     mrnumber = {4077680},
     zbl = {07198291},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019011/}
}
TY  - JOUR
AU  - Garrigos, Guillaume
AU  - Rosasco, Lorenzo
AU  - Villa, Silvia
TI  - Thresholding gradient methods in Hilbert spaces: support identification and linear convergence
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019011/
DO  - 10.1051/cocv/2019011
LA  - en
ID  - COCV_2020__26_1_A28_0
ER  - 
%0 Journal Article
%A Garrigos, Guillaume
%A Rosasco, Lorenzo
%A Villa, Silvia
%T Thresholding gradient methods in Hilbert spaces: support identification and linear convergence
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019011/
%R 10.1051/cocv/2019011
%G en
%F COCV_2020__26_1_A28_0
Garrigos, Guillaume; Rosasco, Lorenzo; Villa, Silvia. Thresholding gradient methods in Hilbert spaces: support identification and linear convergence. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 28. doi : 10.1051/cocv/2019011. http://www.numdam.org/articles/10.1051/cocv/2019011/

[1] H. Attouch and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. Ser. B 116 (2009) 5–16. | DOI | MR | Zbl

[2] H. Attouch, J. Bolte and B.F. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. Math. Program. 137 (2013) 91–129. | DOI | MR | Zbl

[3] A. Barbara, A. Jourani and S. Vaiter, Maximal Solutions of Sparse Analysis Regularization. Preprint (2017). | arXiv | MR

[4] H.H. Bauschke and P. Combettes, Convex Analysis and Monotone Operator Theory, CMS Books in Mathematics, 2nd edn. Springer, Berlin (2017). | MR | Zbl

[5] A. Blanchet and J. Bolte, A family of functional inequalities: Lojasiewicz inequalities and displacement convex functions. J. Funct. Anal. 275 (2018) 1650–1673. | DOI | MR | Zbl

[6] J. Bolte, T.-P. Nguyen, J. Peypouquet and B. Suter, From error bounds to the complexity of first-order descent methods for convex functions. Math. Programm. 165 (2017) 471–507. | DOI | MR | Zbl

[7] J.M. Borwein and A. Lewis, Partially finite convex programming, part I: Quasi relative interiors and duality theory. Math. Programm. 57 (1992) 15–48. | DOI | MR | Zbl

[8] K. Bredies and D.A. Lorenz, Linear convergence of iterative soft-thresholding. J. Fourier Anal. Appl. 14 (2008) 813–837. | DOI | MR | Zbl

[9] P.L. Combettes and J.-C. Pesquet, Proximal thresholding algorithm for minimization over orthonormal bases. SIAM J. Optim. 18 (2007) 1351–1376. | DOI | MR | Zbl

[10] P.L. Combettes, S. Salzo and S. Villa, Consistency of regularized learning schemes in Banach spaces. Math. Programm. published online 2017-03-25.

[11] I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57 (2004) 1413–1457. | DOI | MR | Zbl

[12] D. Davis and W. Yin, Convergence rate analysis of several splitting schemes, in Splitting Methods in Communication, Imaging, Science, and Engineering. Springer International Publishing, Switzerland (2016) 115–163. | DOI | MR

[13] C. De Mol, E. De Vito and L. Rosasco, Elastic-net regularization in learning theory. J. Complexity 25 (2009) 201–230. | DOI | MR | Zbl

[14] K. Degraux, G. Peyré, J. Fadili and L. Jacques, Sparse support recovery with non-smooth loss functions, in Advances in Neural Information Processing Systems (2016) 4269–4277.

[15] C. Dossal, A necessary and sufficient condition for exact recovery by 1 minimization. Comptes Rendus Mathématique 350 (2011) 117–120. | DOI | MR | Zbl

[16] D. Drusvyatskiy and A.D. Lewis, Error bounds, quadratic growth, and linear convergence of proximal methods. Math. Oper. Res. (2018) published online. | MR | Zbl

[17] V. Duval and G. Peyré, Sparse spikes super-resolution on thin grids I: the LASSO. Inverse Probl. 33 (2017) 055008. | DOI | Zbl

[18] J. Fadili, J. Malick and G. Peyré, Sensitivity analysis for Mirror-Stratifiable convex functions. Preprint (2017). | arXiv | MR

[19] P. Frankel, G. Garrigos and J. Peypouquet, Splitting methods with variable metric for Kurdyka-Łojasiewicz functions and general convergence rates. J. Optim. Theory Appl. 165 (2015) 874–900. | DOI | MR | Zbl

[20] G. Garrigos, L. Rosasco and S. Villa, Convergence of the Forward-Backward algorithm: beyond the worst case with the help of geometry. Preprint (2017). | arXiv | MR

[21] E.T. Hale, W. Yin and Y. Zhang, Fixed-point continuation for 1-minimization: methodology and convergence. SIAM J. Optim. 19 (2008) 1107–1130. | DOI | MR | Zbl

[22] W.L. Hare and A.S. Lewis, Identifying active constraints via partial smoothness and prox-regularity. J. Convex Anal. 11 (2004) 251–266. | MR | Zbl

[23] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I: Fundamentals. Springer Science & Business Media, Berlin (1993). | MR

[24] B. Lemaire, Stability of the iteration method for non expansive mappings. Serdica Math. J. 22 (1996) 331–340. | Zbl

[25] G. Li, Global error bounds for piecewise convex polynomials. Math. Programm. 137 (2013) 37–64. | DOI | MR | Zbl

[26] J. Liang, J. Fadili and G. Peyré, Local linear convergence of Forward–Backward under partial smoothness, in Advances in Neural Information Processing Systems (2014) 1970–1978.

[27] J. Liang, J. Fadili and G. Peyré, Activity identification and local linear convergence of Forward-Backward-type methods. SIAM J. Optim. 27 (2017) 408–437. | DOI | MR | Zbl

[28] S. Mosci, L. Rosasco, M. Santoro, A. Verri and S. Villa, Solving structured sparsity regularization with proximal methods, in Machine Learning and Knowledge Discovery in Databases, edited by J.L. Balcázar, F. Bonchi, A. Gionis, M. Sebag, ECML PKDD 2010. Vol 6322 of Lecture Notes in Computer Science. Springer, Berlin, Heidelberg (2010). | DOI

[29] I. Necoara, Y. Nesterov and F. Glineur, Linear convergence of first order methods for non-strongly convex optimization. Math. Programm. 175 (2018) 69–107. | DOI | MR | Zbl

[30] J. Nutini, M. Schmidt and W. Hare, “Active-set complexity” of proximal gradient: how long does it take to find the sparsity pattern?. Preprint (2017). | arXiv | MR

[31] J. Peypouquet, Convex Optimization in Normed Spaces: Theory, Methods and Examples. Springer Science & Buisness Media, Switzerland (2015). | DOI | MR | Zbl

[32] J. Peypouquet and S. Sorin, Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time. J. Convex Anal. 17 (2010) 1113–1163. | MR | Zbl

[33] R.T. Rockafellar, Convex Analysis, Vol. 28 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ (1970). | MR | Zbl

[34] C. Zalinescu, Convex Analysis in General Vector Spaces. World Scientific, NJ (2002). | DOI | MR | Zbl

[35] H. Zou and T. Hastie, Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 67 (2005) 301–320. | DOI | MR | Zbl

Cité par Sources :