Hardy’s uncertainty principle and unique continuation property for stochastic heat equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 9.

The goal of this paper is to prove a qualitative unique continuation property at two points in time for a stochastic heat equation with a randomly perturbed potential, which can be considered as a variant of Hardy’s uncertainty principle for stochastic heat evolutions.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019009
Classification : 35B05, 35B60, 60H15
Mots-clés : Hardy uncertainty principle, unique continuation, stochastic heat equation
@article{COCV_2020__26_1_A9_0,
     author = {Fern\'andez-Bertolin, Aingeru and Zhong, Jie},
     title = {Hardy{\textquoteright}s uncertainty principle and unique continuation property for stochastic heat equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019009},
     mrnumber = {4064470},
     zbl = {1442.35567},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019009/}
}
TY  - JOUR
AU  - Fernández-Bertolin, Aingeru
AU  - Zhong, Jie
TI  - Hardy’s uncertainty principle and unique continuation property for stochastic heat equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019009/
DO  - 10.1051/cocv/2019009
LA  - en
ID  - COCV_2020__26_1_A9_0
ER  - 
%0 Journal Article
%A Fernández-Bertolin, Aingeru
%A Zhong, Jie
%T Hardy’s uncertainty principle and unique continuation property for stochastic heat equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019009/
%R 10.1051/cocv/2019009
%G en
%F COCV_2020__26_1_A9_0
Fernández-Bertolin, Aingeru; Zhong, Jie. Hardy’s uncertainty principle and unique continuation property for stochastic heat equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 9. doi : 10.1051/cocv/2019009. http://www.numdam.org/articles/10.1051/cocv/2019009/

[1] V. Barbu, A. Răşcanu and G. Tessitore, Carleman estimates and controllability of linear stochastic heat equations. Appl. Math. Optim. 47 (2003) 97–120. | DOI | MR | Zbl

[2] J.A. Barcelo, L. Fanelli, S. Gutierrez, A. Ruiz and M.C. Vilela, Hardy uncertainty principle and unique continuation properties of covariant Schrödinger flows. J. Funct. Anal. 264 (2013) 2386–2415. | DOI | MR | Zbl

[3] A.F. Bertolin and L. Vega, Uniqueness properties for discrete equations and Carleman estimates. J. Funct. Anal. 264 (2017) 4853–4869. | DOI | MR | Zbl

[4] B. Cassano and L. Fanelli, Sharp hardy uncertainty principle and gaussian profiles of covariant Schrödinger evolutions. Trans. Am. Math. Soc. 367 (2015) 2213–2233. | DOI | MR | Zbl

[5] M. Cowling, L. Escauriaza, C.E. Kenig, G. Ponce and L. Vega, The hardy uncertainty principle revisited. Indiana Univ. Math. J. 59 (2010) 2007–2025. | DOI | MR | Zbl

[6] M. De Guzman Differentiation of Integrals in ℝn. Measure Theory. Springer, Berlin (1976) 181–185. | DOI | MR | Zbl

[7] L. Escauriaza, C.E. Kenig, G. Ponce and L. Vega, On uniqueness properties of solutions of Schrödinger equations. Commun. Part. Differ. Equ. 264 (2006) 1811–1823. | DOI | MR | Zbl

[8] L. Escauriaza, C.E. Kenig, G. Ponce and L. Vega, Hardy’s uncertainty principle, convexity and Schrödinger evolutions. J. Eur. Math. Soc. 264 (2008) 883–907. | MR | Zbl

[9] L. Escauriaza, C.E. Kenig, G. Ponce and L. Vega, Uncertainty principle of morgan type and Schrödinger evolutions. J. Lond. Math. Soc. 264 (2010) 187–207. | MR | Zbl

[10] L. Escauriaza, C. Kenig, G. Ponce and L. Vega, Uniqueness properties of solutions to Schrödinger equations. Bull. Am. Math. Soc. 264 (2012) 415–442. | MR | Zbl

[11] L. Escauriaza, C.E. Kenig, G. Ponce and L. Vega, Hardy uncertainty principle, convexity and parabolic evolutions. Commun. Math. Phys. 346 (2016) 667–678. | DOI | MR | Zbl

[12] L. Escauriaza, C.E. Kenig, G. Ponce, L. Vega et al., The sharp hardy uncertainty principle for Schrödinger evolutions. Duke Math. J. 155 (2010) 163–187. | DOI | MR | Zbl

[13] A. Fernández-Bertolin, Convexity properties of discrete Schrödinger evolutions and hardy’s uncertaintyprinciple (2015). | arXiv

[14] F. Flandoli, Regularity Theory and Stochastic Flows for Parabolic SPDES, Vol. 9. CRC Press, Boca Raton (1995). | MR | Zbl

[15] P. Gao, M. Chen and Y. Li, Observability estimates and null controllability for forward and backward linear stochastic Kuramoto–Sivashinsky equations. SIAM J. Control Optim. 53 (2015) 475–500. | DOI | MR | Zbl

[16] G.H. Hardy, A theorem concerning Fourier transforms. J. Lond. Math. Soc. 264 (1933) 227–231. | DOI | MR | Zbl

[17] P. Jaming, Y. Lyubarskii, E. Malinnikova and K.-M. Perfekt, Uniqueness for discrete Schrödingerevolutions (2015). | arXiv

[18] Q. Lü, Carleman estimate for stochastic parabolic equations and inverse stochastic parabolic problems. Inverse Probl. 264 (2012) 045008. | DOI | MR | Zbl

[19] Q. Lu, Observability estimate for stochastic schrödinger equations and its applications. SIAM J. Control Optim. 51 (2013) 121–144. | DOI | MR | Zbl

[20] Q. Lü and Z. Yin, Unique continuation for stochastic heat equations. ESAIM: COCV 21 (2015) 378–398. | Numdam | MR | Zbl

[21] Q. Lü and X. Zhang, Global uniqueness for an inverse stochastic hyperbolic problem with three unknowns. Commun. Pure Appl. Math. 264 (2015) 948–963. | DOI | MR | Zbl

[22] T.A. Nguyen, On a question of Landis and Oleinik. Trans. Am. Math. Soc. 362 (2010) 2875–2899. | DOI | MR | Zbl

[23] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Vol. 293. Springer Science & Business Media, Berlin (2013). | MR | Zbl

[24] A. Sitaram, M. Sundari and S. Thangavelu, Uncertainty principles on certain lie groups. Proc. Indian Acad. Sci. (Math. Sci.) 105 (1995) 135–151. | DOI | MR | Zbl

[25] E.M. Stein and R. Shakarchi, Complex Analysis. Vol. II of Princeton Lectures in Analysis. Princeton University Press, NJ (2003). | MR | Zbl

[26] G. Wang, M. Wang and Y. Zhang, Observability and unique continuation inequalities for the Schrödingerequation (2016). | arXiv

[27] D. Yang and J. Zhong, Observability inequality of backward stochastic heat equations for measurable sets and its applications. SIAM J. Control Optim. 264 (2016) 1157–1175. | DOI | MR | Zbl

[28] G. Yuan, Conditional stability in determination of initial data for stochastic parabolic equations. Inverse Probl. 264 (2017) 035014. | DOI | MR | Zbl

[29] X. Zhang, Carleman and observability estimates for stochastic wave equations. SIAM J. Math. Anal. 40 (2008) 851–868. | DOI | MR | Zbl

[30] X. Zhang, Unique continuation for stochastic parabolic equations. Differ. Integral Equ. 21 (2008) 81–93. | MR | Zbl

[31] E. Zuazua, Controllability and observability of partial differential equations: some results and open problems, in Handbook of Differential Equations: Evolutionary Equations, Vol. 3. Elsevier, North Holland (2007) 527–621. | MR | Zbl

Cité par Sources :