The goal of this paper is to prove a qualitative unique continuation property at two points in time for a stochastic heat equation with a randomly perturbed potential, which can be considered as a variant of Hardy’s uncertainty principle for stochastic heat evolutions.
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019009
Mots-clés : Hardy uncertainty principle, unique continuation, stochastic heat equation
@article{COCV_2020__26_1_A9_0, author = {Fern\'andez-Bertolin, Aingeru and Zhong, Jie}, title = {Hardy{\textquoteright}s uncertainty principle and unique continuation property for stochastic heat equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {26}, year = {2020}, doi = {10.1051/cocv/2019009}, mrnumber = {4064470}, zbl = {1442.35567}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2019009/} }
TY - JOUR AU - Fernández-Bertolin, Aingeru AU - Zhong, Jie TI - Hardy’s uncertainty principle and unique continuation property for stochastic heat equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2020 VL - 26 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2019009/ DO - 10.1051/cocv/2019009 LA - en ID - COCV_2020__26_1_A9_0 ER -
%0 Journal Article %A Fernández-Bertolin, Aingeru %A Zhong, Jie %T Hardy’s uncertainty principle and unique continuation property for stochastic heat equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2020 %V 26 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2019009/ %R 10.1051/cocv/2019009 %G en %F COCV_2020__26_1_A9_0
Fernández-Bertolin, Aingeru; Zhong, Jie. Hardy’s uncertainty principle and unique continuation property for stochastic heat equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 9. doi : 10.1051/cocv/2019009. http://www.numdam.org/articles/10.1051/cocv/2019009/
[1] Carleman estimates and controllability of linear stochastic heat equations. Appl. Math. Optim. 47 (2003) 97–120. | DOI | MR | Zbl
, and ,[2] Hardy uncertainty principle and unique continuation properties of covariant Schrödinger flows. J. Funct. Anal. 264 (2013) 2386–2415. | DOI | MR | Zbl
, , , and ,[3] Uniqueness properties for discrete equations and Carleman estimates. J. Funct. Anal. 264 (2017) 4853–4869. | DOI | MR | Zbl
and ,[4] Sharp hardy uncertainty principle and gaussian profiles of covariant Schrödinger evolutions. Trans. Am. Math. Soc. 367 (2015) 2213–2233. | DOI | MR | Zbl
and ,[5] The hardy uncertainty principle revisited. Indiana Univ. Math. J. 59 (2010) 2007–2025. | DOI | MR | Zbl
, , , and ,[6] Differentiation of Integrals in ℝn. Measure Theory. Springer, Berlin (1976) 181–185. | DOI | MR | Zbl
[7] On uniqueness properties of solutions of Schrödinger equations. Commun. Part. Differ. Equ. 264 (2006) 1811–1823. | DOI | MR | Zbl
, , and ,[8] Hardy’s uncertainty principle, convexity and Schrödinger evolutions. J. Eur. Math. Soc. 264 (2008) 883–907. | MR | Zbl
, , and ,[9] Uncertainty principle of morgan type and Schrödinger evolutions. J. Lond. Math. Soc. 264 (2010) 187–207. | MR | Zbl
, , and ,[10] Uniqueness properties of solutions to Schrödinger equations. Bull. Am. Math. Soc. 264 (2012) 415–442. | MR | Zbl
, , and ,[11] Hardy uncertainty principle, convexity and parabolic evolutions. Commun. Math. Phys. 346 (2016) 667–678. | DOI | MR | Zbl
, , and ,[12] The sharp hardy uncertainty principle for Schrödinger evolutions. Duke Math. J. 155 (2010) 163–187. | DOI | MR | Zbl
, , , et al.,[13] Convexity properties of discrete Schrödinger evolutions and hardy’s uncertaintyprinciple (2015). | arXiv
,[14] Regularity Theory and Stochastic Flows for Parabolic SPDES, Vol. 9. CRC Press, Boca Raton (1995). | MR | Zbl
,[15] Observability estimates and null controllability for forward and backward linear stochastic Kuramoto–Sivashinsky equations. SIAM J. Control Optim. 53 (2015) 475–500. | DOI | MR | Zbl
, and ,[16] A theorem concerning Fourier transforms. J. Lond. Math. Soc. 264 (1933) 227–231. | DOI | MR | Zbl
,[17] Uniqueness for discrete Schrödingerevolutions (2015). | arXiv
, , and ,[18] Carleman estimate for stochastic parabolic equations and inverse stochastic parabolic problems. Inverse Probl. 264 (2012) 045008. | DOI | MR | Zbl
,[19] Observability estimate for stochastic schrödinger equations and its applications. SIAM J. Control Optim. 51 (2013) 121–144. | DOI | MR | Zbl
,[20] Unique continuation for stochastic heat equations. ESAIM: COCV 21 (2015) 378–398. | Numdam | MR | Zbl
and ,[21] Global uniqueness for an inverse stochastic hyperbolic problem with three unknowns. Commun. Pure Appl. Math. 264 (2015) 948–963. | DOI | MR | Zbl
and ,[22] On a question of Landis and Oleinik. Trans. Am. Math. Soc. 362 (2010) 2875–2899. | DOI | MR | Zbl
,[23] Continuous Martingales and Brownian Motion, Vol. 293. Springer Science & Business Media, Berlin (2013). | MR | Zbl
and ,[24] Uncertainty principles on certain lie groups. Proc. Indian Acad. Sci. (Math. Sci.) 105 (1995) 135–151. | DOI | MR | Zbl
, and ,[25] Complex Analysis. Vol. II of Princeton Lectures in Analysis. Princeton University Press, NJ (2003). | MR | Zbl
and ,[26] Observability and unique continuation inequalities for the Schrödingerequation (2016). | arXiv
, and ,[27] Observability inequality of backward stochastic heat equations for measurable sets and its applications. SIAM J. Control Optim. 264 (2016) 1157–1175. | DOI | MR | Zbl
and ,[28] Conditional stability in determination of initial data for stochastic parabolic equations. Inverse Probl. 264 (2017) 035014. | DOI | MR | Zbl
,[29] Carleman and observability estimates for stochastic wave equations. SIAM J. Math. Anal. 40 (2008) 851–868. | DOI | MR | Zbl
,[30] Unique continuation for stochastic parabolic equations. Differ. Integral Equ. 21 (2008) 81–93. | MR | Zbl
,[31] Controllability and observability of partial differential equations: some results and open problems, in Handbook of Differential Equations: Evolutionary Equations, Vol. 3. Elsevier, North Holland (2007) 527–621. | MR | Zbl
,Cité par Sources :