On Mean Field Games models for exhaustible commodities trade
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 11.

We investigate a mean field game model for the production of exhaustible resources. In this model, firms produce comparable goods, strategically set their production rate in order to maximise profit, and leave the market as soon as they deplete their capacities. We examine the related Mean Field Game system and prove well-posedness for initial measure data by deriving suitable a priori estimates. Then, we show that feedback strategies which are computed from the Mean Field Game system provide ε-Nash equilibria to the corresponding N-Player Cournot game, for large values of N. This is done by showing tightness of the empirical process in the Skorokhod M 1 topology, which is defined for distribution-valued processes.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019008
Classification : 35Q91, 60H30, 35K61
Mots-clés : Mean field games, exhaustible resources, Cournot models, Nash equilibrium
@article{COCV_2020__26_1_A11_0,
     author = {Jameson Graber, Philip and Mouzouni, Charafeddine},
     title = {On {Mean} {Field} {Games} models for exhaustible commodities trade},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019008},
     mrnumber = {4064472},
     zbl = {1437.35664},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019008/}
}
TY  - JOUR
AU  - Jameson Graber, Philip
AU  - Mouzouni, Charafeddine
TI  - On Mean Field Games models for exhaustible commodities trade
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019008/
DO  - 10.1051/cocv/2019008
LA  - en
ID  - COCV_2020__26_1_A11_0
ER  - 
%0 Journal Article
%A Jameson Graber, Philip
%A Mouzouni, Charafeddine
%T On Mean Field Games models for exhaustible commodities trade
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019008/
%R 10.1051/cocv/2019008
%G en
%F COCV_2020__26_1_A11_0
Jameson Graber, Philip; Mouzouni, Charafeddine. On Mean Field Games models for exhaustible commodities trade. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 11. doi : 10.1051/cocv/2019008. http://www.numdam.org/articles/10.1051/cocv/2019008/

[1] R.F. Anderson and S. Orey, Small random perturbation of dynamical systems with reflecting boundary. Nagoya Math. J. 60 (1976) 189–216. | DOI | MR | Zbl

[2] F. Avram and M.S. Taqqu, Probability bounds for M-Skorohod oscillations. Stoch. Process. Appl. 33 (1989) 1. | DOI | MR | Zbl

[3] A. Bensoussan, J. Frehse and P. Yam, Mean field games and mean field type control theory, Vol. 101, Springer (2013). | DOI | MR | Zbl

[4] P.-E. Caines, M. Huang and P. Malhamé, Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 (2006) 221–251. | DOI | MR | Zbl

[5] P.-E. Caines, M. Huang and P. Malhamé, Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized ϵ-Nash equilibria. IEEE Trans. Automat. Control 52 (2007) 1560–1571. | DOI | MR | Zbl

[6] P. Cannarsa and R. Capuani, Existence and uniqueness for Mean Field Games with state constraints, PDE Models for Multi-Agent Phenomena (2018) 49–71. | DOI | MR | Zbl

[7] P. Cannarsa, R. Capuani and P. Cardaliaguet, C1,1-smoothness of constrained solutions in the calculus of variations with application to mean field games. (2018). | arXiv | MR | Zbl

[8] P. Cannarsa, R. Capuani and P. Cardaliaguet, Mean Field Games with state constraints: from mild to pointwise solutions of the PDE system. (2018). | arXiv | Zbl

[9] P. Cardaliaguet and C.-A. Lehalle, Mean field game of controls and an application to trade crowding. Math. Financ. Econ. 12 (2018) 335–363. | DOI | MR | Zbl

[10] P. Cardaliaguet, F. Delarue, J.-M. Lasry and P.-L. Lions, The master equation and the convergence problem in mean field games. (2015). | arXiv | Zbl

[11] R. Carmona and F. Delarue, Probabilistic analysis of mean-field games. SIAM J. Cont. Optim. 51 (2013) 2705–2734. | DOI | MR | Zbl

[12] R. Carmona and F. Delarue, Probabilistic theory of mean-field games with applications I–II, Vol. 83–84, Springer (2018). | MR

[13] P. Chan and R. Sircar, Bertrand and Cournot mean field games. Appl. Math. Optim. 71 (2015) 533–569. | DOI | MR | Zbl

[14] P. Chan and R. Sircar, Fracking, renewables & mean field games. SIAM Rev. 59 (2017) 588–615. | DOI | MR | Zbl

[15] M. Freidlin, Functional integration and partial differential equations. Annals of Mathematics Studies, Princeton University Press (1985). | MR | Zbl

[16] D. Fudenberg and J. Tirole, Game Theory, MIT Press (1991). | MR

[17] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin (2001). | MR | Zbl

[18] D. Gomes and V. Voskanyan, Extended deterministic mean-field games. SIAM J. Cont. Optim. 54 (2016) 1030–1055. | DOI | MR | Zbl

[19] D. Gomes, S. Patrizi and V. Voskanyan, On the existence of classical solutions for stationary extended mean field games. Nonlin. Anal. Theory Methods Appl. 99 (2014) 49–79. | DOI | MR | Zbl

[20] P.J. Graber and C. Mouzouni, Variational mean field games for market competition. (2017). | arXiv | MR | Zbl

[21] P.J. Graber and A. Bensoussan, Existence and uniqueness of solutions for Bertrand and Cournot mean field games. Appl. Math. Optim. 77 (2018) 47–71. | DOI | MR | Zbl

[22] O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications, Paris-Princeton lectures on mathematicalfinance 2010 (2011) 205–266. | MR | Zbl

[23] B. Hambly and S. Ledger, A stochastic McKean-Vlasov equation for absorbing diffusions on the half-line. Ann. Appl. Probab. 27 (2017) 2698–2752. | DOI | MR | Zbl

[24] C. Harris, S. Howison and R. Sircar, Games with exhaustible resources. SIAM J. Appl. Math. 70 (2010) 2556–2581. | DOI | MR | Zbl

[25] V.N. Kolokoltsov, J. Li and W. Yang, Mean field games and nonlinear Markov processes. (2011). | arXiv

[26] O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Ural’Ceva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, vol. 23, American Mathematical Society, Providence, R.I. (1967). | MR

[27] J.-M. Lasry and P.-L. Lions, Jeux á champ moyen. I–Le cas stationnaire. Comptes Rendus Mathématique 343 (2006) 619–625. | DOI | MR | Zbl

[28] J.-M. Lasry and P.-L. Lions, Jeux á champ moyen. II-Horizon fini et contrôle optimal. Comptes Rendus Mathématique 343 (2006) 679–684. | DOI | MR | Zbl

[29] J.-M. Lasry and P.-L. Lions, Mean field games. Jpn. J. Math. 2 (2007) 229–260. | DOI | MR | Zbl

[30] S. Ledger, Skorokhod’s M1 topology for distribution-valued processes. Electr. Commun. Prob. 21 (2016). | MR | Zbl

[31] A. Ledvina and R. Sircar, Dynamic Bertrand Oligopoly. Appl. Math. Optim. 63 (2011) 11–44. | DOI | MR | Zbl

[32] P.-L. Lions, Cours au Collège de France, www.college-de-france.fr.

[33] M. Ludkovski and X. Yang, Mean Field Game Approach to Production and Exploration of Exhaustible Commodities. (2017). | arXiv

[34] I. Mitoma, On the sample continuity of S1-processes. J. Math. Soc. Jpn. 35 (1983) 629–636. | DOI | MR | Zbl

[35] A. Porretta, Weak solutions to Fokker–Planck equations and mean field games. Arch. Ratl. Mech. Anal. 216 (2015) 1–62. | DOI | MR | Zbl

[36] T. Rachev and L. Rüschendorf, Mass Transportation Problems. Vol. I: Theory; Vol. II: Applications, Probability and Its Applications, Springer-Verlag New York (1998). | MR | Zbl

[37] L.C.G. Rogers and D. Williams, Diffusions, Markov processes, and martingales. Vol. 2, Cambridge Mathematical Library. Cambridge University Press (2000). | MR | Zbl

[38] W. Whitt, Stochastic-process limits: an introduction to stochastic-process limits and their application to queues, Springer Science & Business Media (2002). | DOI | MR | Zbl

Cité par Sources :