Minimizing acceleration on the group of diffeomorphisms and its relaxation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 70.

We study a second-order variational problem on the group of diffeomorphisms of the interval [0, 1] endowed with a right-invariant Sobolev metric of order 2, which consists in the minimization of the acceleration. We compute the relaxation of the problem which involves the so-called Fisher–Rao functional, a convex functional on the space of measures. This relaxation enables the derivation of several optimality conditions and, in particular, a sufficient condition which guarantees that a given path of the initial problem is also a minimizer of the relaxed one. Based on these sufficient conditions, the main result is that, when the value of the (minimized) functional is small enough, the minimizers are classical, that is the defect measure vanishes.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018068
Classification : 53-XX, 49-XX
Mots-clés : Riemannian cubics, splines, right-invariant metric on group of diffeomorphisms, relaxation
Tahraoui, Rabah 1 ; Vialard, François-Xavier 1

1
@article{COCV_2019__25__A70_0,
     author = {Tahraoui, Rabah and Vialard, Fran\c{c}ois-Xavier},
     title = {Minimizing acceleration on the group of diffeomorphisms and its relaxation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018068},
     mrnumber = {4036657},
     zbl = {1439.49024},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018068/}
}
TY  - JOUR
AU  - Tahraoui, Rabah
AU  - Vialard, François-Xavier
TI  - Minimizing acceleration on the group of diffeomorphisms and its relaxation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018068/
DO  - 10.1051/cocv/2018068
LA  - en
ID  - COCV_2019__25__A70_0
ER  - 
%0 Journal Article
%A Tahraoui, Rabah
%A Vialard, François-Xavier
%T Minimizing acceleration on the group of diffeomorphisms and its relaxation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018068/
%R 10.1051/cocv/2018068
%G en
%F COCV_2019__25__A70_0
Tahraoui, Rabah; Vialard, François-Xavier. Minimizing acceleration on the group of diffeomorphisms and its relaxation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 70. doi : 10.1051/cocv/2018068. http://www.numdam.org/articles/10.1051/cocv/2018068/

[1] V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16 (1966) 319–361. | DOI | Numdam | MR | Zbl

[2] C.J. Atkin, Geodesic and metric completeness in infinite dimensions. Hokkaido Math. J. 26 (1997) 1–61. | DOI | MR | Zbl

[3] T. Aubin, Un théorème de compacité. C. R. Math. 256 (1963) 5042–5044. | MR | Zbl

[4] M. Bauer, J. Escher and B. Kolev, Local and global well-posedness of the fractional order EPDiff equation on ℝd. J. Differ. Equ. 258 (2015) 2010–2053. | DOI | MR | Zbl

[5] A. Berlinet and C. Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer Academic Publishers, Boston (2004). | DOI | MR | Zbl

[6] G. Birkhoff, H. Burchard and D. Thomas, Non-linear interpolation by splines, pseudosplines and elastica. General Motors Research Lab Report 468 (1965).

[7] J.-M. Bismut, Hypoelliptic Laplacian and Orbital Integrals, Vol. 177. Princeton University Press, NJ (2011). | MR | Zbl

[8] R.I. Bot, Conjugate Duality in Convex Optimization. Springer-Verlag, Heidelberg (2010). | DOI | MR | Zbl

[9] A. Braides, Gamma-Convergence for Beginners. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford (2002). | MR | Zbl

[10] Y. Brenier, The least action principle and the related concept of generalized flows for incompressible perfect fluids. J. Am. Math. Soc. 2 (1989) 225–255. | DOI | MR | Zbl

[11] G. Brunnett and J. Kiefer, Interpolation with minimal-energy splines. Comput.-Aided Des. 26 (1994) 137–144. | DOI | Zbl

[12] M. Bruveris and F.-X. Vialard, On completeness of groups of diffeomorphisms. J. Eur. Math. Soc. 19 (2017) 1507–1544. | DOI | MR | Zbl

[13] R. Bryant and P. Griffiths, Reduction for constrained variational problems and ∫(κ2∕2)ds. Am. J. Math. 108 (1986) 525–570. | DOI | MR | Zbl

[14] M. Camarinha, F. Silva Leite and P. Crouch, Splines of class 𝒞k on non-euclidean spaces. IMA J. Math. Control Inform. 12 (1995) 399–410. | DOI | MR | Zbl

[15] F. Cao, Y. Gousseau, S. Masnou and P. Pérez, Geometrically guided exemplar-based inpainting. SIAM J. Imaging Sci. 4 (2011) 1143–1179. | DOI | MR | Zbl

[16] T.F. Chan, S.H. Kang and J. Shen, Euler’s elastica and curvature based inpaintings. SIAM J. Appl. Math. 63 (2001) 564–592. | MR | Zbl

[17] A. Constantin and B. Kolev, Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv. 78 (2003) 787–804. | DOI | MR | Zbl

[18] A. Constantin and B. Kolev, Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv., 78 (2001) 787–804. | DOI | MR | Zbl

[19] P. Crouch and F. Silva Leite The dynamic interpolation problem: On Riemannian manifold, Lie groups and symmetric spaces. J. Dyn. Control Syst. 1 (1995) 177–202. | DOI | MR | Zbl

[20] D.G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92 (1970) 102–163. | DOI | MR | Zbl

[21] I. Ekeland and R. Téman, Convex Analysis and Variational Problems. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (1999). | DOI | MR | Zbl

[22] F. Gay-Balmaz, D.D. Holm, D.M. Meier, T.S. Ratiu and F.-X. Vialard, Invariant higher-order variational problems. Commun. Math. Phys. 309 (2012) 413–458. | DOI | MR | Zbl

[23] F. Gay-Balmaz, D.D. Holm, D.M. Meier, T.S. Ratiu and F.-X. Vialard, Invariant higher-order variational problems II. J. Nonlinear Sci. 22 (2012) 553–597. | DOI | MR | Zbl

[24] R. Giambo and F. Giannoni, An analytical theory for riemannian cubic polynomials. IMA J. Math. Control Inform. 19 (2002) 445–460. | DOI | MR | Zbl

[25] N. Koiso, Elasticae in a Riemannian submanifold. Osaka J. Math. 29 (1992) 539–543. | MR | Zbl

[26] S. Lang, Fundamentals of differential geometry. Vol. 191 of Graduate Texts in Mathematics. Springer-Verlag, New York (1999). | MR | Zbl

[27] J. Langer and D.A. Singer, The total squared curvature of closed curves. J. Differ. Geom. 20 (1984) 1–22. | DOI | MR | Zbl

[28] E.H. Lee and G.E. Forsythe, Variational study of nonlinear spline curves. SIAM Rev. 15 (1973) 120–133. | DOI | MR | Zbl

[29] J.L. Lions, Quelques Méthodes De Résolution Des Problèmes Aux Limites Non Linéaires. Dunod, Paris (1969). | MR | Zbl

[30] M. Bauer, M. Bruveris and P.W. Michor, Uniqueness of the Fisher-Rao metric on the space of smooth Densities. Preprint (2014). | arXiv | MR

[31] M. Micheli, P.W. Michor and D. Mumford, Sectional curvature in terms of the cometric, with applications to the riemannian manifolds of landmarks. SIAM J. Imaging Sci. 5 (2012) 394–433. | DOI | MR | Zbl

[32] G. Micula, A variational approach to spline functions theory. Gen. Math. 10 (2002) 21–51. | MR | Zbl

[33] G. Misiolek and S.C. Preston, Fredholm properties of riemannian exponential maps on diffeomorphism groups. Invent. Math. 179 (2010) 191–227. | DOI | MR | Zbl

[34] D. Mumford, Elastica and computer vision, in Algebraic Geometry and Its Applications, edited by C.L. Bajaj. Springer, New York (1994) 491–506. | DOI | MR | Zbl

[35] L. Noakes, G. Heinzinger and B. Paden, Cubic splines on curved spaces. IMA J. Math. Control Inform. 6 (1989) 465–473. | DOI | MR | Zbl

[36] H. Omori, On Banach-Lie groups acting on finite dimensional manifolds. Tôhoku Math. J. 30 (1978) 223–250. | DOI | MR | Zbl

[37] D. O’Regan, Existence Theory for Nonlinear Ordinary Differential Equations. Springer, Netherlands (1997). | DOI | MR | Zbl

[38] R. Rockafellar, Integrals which are convex functionals. II. Pacific J. Math. 39 (1971) 439–469. | DOI | MR | Zbl

[39] R.T. Rockafellar and R.J.-B. Wets, Variational Analysis, Vol. 317. Springer Science & Business Media, Berlin, Heidelberg (2009). | Zbl

[40] C. Samir, P.-A. Absil, A. Srivastava and E. Klassen, A gradient-descent method for curve fitting on riemannian manifolds. Found. Comput. Math. 12 (2012) 49–73. | DOI | MR | Zbl

[41] J. Simon, Compact sets in Lp([0, 1], b). Ann. Mat. Pura Appl. CXLVI (1987) 65–96. | Zbl

[42] N. Singh, F.-X. Vialard and M. Niethammer, Splines for diffeomorphisms. Med. Image Anal. 25 (2015) 56–71. | DOI

[43] J. Ulen, P. Strandmark and F. Kahl, Shortest paths with higher-order regularization. IEEE Trans. Pattern Anal. Mach. Intell. 37 (2015) 2588–2600. | DOI

[44] F.-X. Vialard and A. Trouvé, Shape splines and stochastic shape evolutions: a second order point of view. Quart. Appl. Math. 70 (2012) 219–251. | DOI | MR | Zbl

[45] Laurent Younes. Shapes and Diffeomorphisms. Springer, Berlin, Heidelberg (2010). | DOI | MR | Zbl

Cité par Sources :