Lack of null controllability of viscoelastic flows
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 60.

We consider controllability of linear viscoelastic flow with a localized control in the momentum equation. We show that, for Jeffreys fluids or for Maxwell fluids with more than one relaxation mode, exact null controllability does not hold. This contrasts with known results on approximate controllability.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018067
Classification : 35Q35, 76A10, 93B05
Mots-clés : Linear viscoelasticity, controllability, microlocal analysis
Maity, Debayan 1 ; Mitra, Debanjana 1 ; Renardy, Michael 1

1
@article{COCV_2019__25__A60_0,
     author = {Maity, Debayan and Mitra, Debanjana and Renardy, Michael},
     title = {Lack of null controllability of viscoelastic flows},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018067},
     mrnumber = {4023122},
     zbl = {1437.35585},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018067/}
}
TY  - JOUR
AU  - Maity, Debayan
AU  - Mitra, Debanjana
AU  - Renardy, Michael
TI  - Lack of null controllability of viscoelastic flows
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018067/
DO  - 10.1051/cocv/2018067
LA  - en
ID  - COCV_2019__25__A60_0
ER  - 
%0 Journal Article
%A Maity, Debayan
%A Mitra, Debanjana
%A Renardy, Michael
%T Lack of null controllability of viscoelastic flows
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018067/
%R 10.1051/cocv/2018067
%G en
%F COCV_2019__25__A60_0
Maity, Debayan; Mitra, Debanjana; Renardy, Michael. Lack of null controllability of viscoelastic flows. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 60. doi : 10.1051/cocv/2018067. http://www.numdam.org/articles/10.1051/cocv/2018067/

[1] J.L. Boldrini, A. Doubova, E. Fernández-Cara and M. González-Burgos, Some controllability results for linear viscoelastic fluids. SIAM J. Control Optim. 50 (2012) 900–924. | DOI | MR | Zbl

[2] F.W. Chaves-Silva, X. Zhang and E. Zuazua, Controllability of evolution equations with memory. SIAM J. Control Optim. 55 (2017) 2437–2459. | DOI | MR | Zbl

[3] S. Chowdhury, D. Mitra, M. Ramaswamy and M. Renardy, Approximate controllability results for linear viscoelastic flows. J. Math. Fluid Mech. 19 (2017) 529–549. | DOI | MR | Zbl

[4] A. Doubova and E. Fernández-Cara, On the control of viscoelastic Jeffreys fluids. Syst. Cont. Lett. 61 (2012) 573–579. | DOI | MR | Zbl

[5] A. Doubova, E. Fernández-Cara and M. González-Burgos, Controllability results for linear viscoelastic fluids of the Maxwell and Jeffreys kinds. C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 537–542. | DOI | MR | Zbl

[6] Edited by Yu.V. Egorov and M.A. Shubin, Microlocal analysis. Springer Verlag Berlin, Heidelberg (1993) 1–147.

[7] V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations, Theory and algorithms, in vol. 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986). | DOI | MR | Zbl

[8] S. Guerrero and  O.Yu. Imanuvilov, Remarks on non-controllability of the heat equation with memory. ESAIM: COCV 19 (2013) 288–300. | Numdam | MR | Zbl

[9] L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution theory and Fourier analysis. Distribution theory and Fourier analysis. In Springer Study Edition., 2nd edn. Springer-Verlag, Berlin (2003). | Zbl

[10] I. Lasiecka, Controllability of a viscoelastic Kirchhoff plate. In Control and Estimation of Distributed Parameter Systems (Vorau, 1988). Vol. 91 of Int. Ser. Numer. Math.. Birkhäuser, Basel (1989) 237–247. | MR | Zbl

[11] G. Leugering, Exact controllability in viscoelasticity of fading memory type. Appl. Anal. 18 (1984) 221–243. | DOI | MR | Zbl

[12] G. Leugering, Exact boundary controllability of an integro-differential equation. Appl. Math. Optim. 15 (1987) 223–250. | DOI | MR | Zbl

[13] G. Leugering, Time optimal boundary controllability of a simple linear viscoelastic liquid. Math. Methods Appl. Sci. 9 (1987) 413–430. | DOI | MR | Zbl

[14] W.J. Liu and G.H. Williams, Partial exact controllability for the linear thermo-viscoelastic model. Electr. J. Differ. Equ. 17 (1998) 11. | MR | Zbl

[15] Q. Lu, X. Zhang and E. Zuazua, Null controllability for wave equations with memory. J. Math. Pures Appl. 108 (2017) 500–531. | DOI | MR | Zbl

[16] D. Mitra, M. Ramaswamy and M. Renardy, Approximate controllability results for viscoelastic flows with infinitely many relaxation modes. J. Differ. Equ. 264 (2018) 575–603. | DOI | MR | Zbl

[17] M. Renardy, Are viscoelastic flows under control or out of control? Syst. Cont. Lett. 54 (2005) 1183–1193. | DOI | MR | Zbl

[18] M. Renardy, Shear flow of viscoelastic fluids as a control problem. J. Non-Newtonian Fluid Mech. 131 (2005) 59–63. | DOI | Zbl

[19] M. Renardy, On control of shear flow of an upper convected Maxwell fluid. Z. Angew. Math. Mech. 87 (2007) 213–218. | DOI | MR | Zbl

[20] M. Renardy, Controllability of viscoelastic stresses for nonlinear Maxwell models. J. Non-Newtonian Fluid Mech. 156 (2009) 70–74. | DOI | Zbl

[21] M. Renardy, A note on a class of observability problems for PDEs. Syst. Control Lett. 58 (2009) 183–187. | DOI | MR | Zbl

[22] M. Renardy, W.J. Hrusa and J.A. Nohel, Mathematical Problems in Viscoelasticity. Longman Scientific and Technical, Harlow, Essex (1987). | MR | Zbl

[23] E. Savelev and M. Renardy, Control of homogeneous shear flow of multimode Maxwell fluids. J. Non-Newtonian Fluid Mech. 165 (2010) 136–142. | DOI | Zbl

[24] Q. Tao and H. Gao, On the null controllability of the heat equation with memory. J. Math. Anal. Appl. 440 (2016) 1–13. | DOI | MR | Zbl

Cité par Sources :