Turnpike properties of optimal relaxed control problems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 74.

In this paper, three kinds of turnpike properties for optimal relaxed control problems are considered. Under some convexity and controllability assumptions, we obtain the uniform boundedness of the optimal pairs and the adjoint functions. On the basis, we prove the integral turnpike property, the mean square turnpike property and the exponential turnpike property, respectively.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018064
Classification : 49J15, 49K15
Mots-clés : Turnpike property, relaxed control, maximum principle
Lou, Hongwei 1 ; Wang, Weihan 1

1
@article{COCV_2019__25__A74_0,
     author = {Lou, Hongwei and Wang, Weihan},
     title = {Turnpike properties of optimal relaxed control problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018064},
     zbl = {1439.49006},
     mrnumber = {4039136},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018064/}
}
TY  - JOUR
AU  - Lou, Hongwei
AU  - Wang, Weihan
TI  - Turnpike properties of optimal relaxed control problems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018064/
DO  - 10.1051/cocv/2018064
LA  - en
ID  - COCV_2019__25__A74_0
ER  - 
%0 Journal Article
%A Lou, Hongwei
%A Wang, Weihan
%T Turnpike properties of optimal relaxed control problems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018064/
%R 10.1051/cocv/2018064
%G en
%F COCV_2019__25__A74_0
Lou, Hongwei; Wang, Weihan. Turnpike properties of optimal relaxed control problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 74. doi : 10.1051/cocv/2018064. http://www.numdam.org/articles/10.1051/cocv/2018064/

[1] H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, Matrix Riccati Equations in Control and Systems Theory. Birkhäuser, Basel (2003). | DOI | MR | Zbl

[2] D.A. Carlson, A. Haurie and A. Leizarowitz, Infinite Horizon Optimal Control: Deterministic and Stochastic Systems. Springer-Verlag, Berlin (1991). | DOI | MR | Zbl

[3] T. Damm, L. Grüne, M. Stieler and K. Worthmann, An exponential turnpike theorem for dissipative discrete time optimal control problems. SIAM J. Control Optim. 52 (2014) 1935–1957. | DOI | MR | Zbl

[4] R. Dorfman, P.A. Samuelson and R.M. Solow, Linear Programming and Economics Analysis. McGraw-Hill, New York (1958). | MR | Zbl

[5] T. Faulwasser, M. Korda, C. N. Jones and D. Bonvin, On turnpike and dissipativity properties of continuous-time optimal control problems. Automatica 81 (2017) 297–304. | DOI | MR | Zbl

[6] L. Grüne and M. Müller, On the relation between strict dissipativity and turnpike properties. Syst. Control Lett. 90 (2016) 45–53. | DOI | MR | Zbl

[7] X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems. Birkhäuser, Boston (1995). | DOI | MR | Zbl

[8] H. Lou, Existence of optimal controls for semilinear elliptic equations without Cesari-type conditions. ANZIAM J. 44 (2003) 115–131. | DOI | MR | Zbl

[9] M.A. Mamedov, Asymptotical stability of optimal paths in nonconvex problems, in Optimization: Structure and Applications, edited by C. Pearce and E. Hunt. Springer, New York (2009). | MR | Zbl

[10] L.W. Mckenzie, Turnpike theory. Econometrica 44 (1976) 841–865. | DOI | MR | Zbl

[11] J. Von Neumann, A model of general economic equilibrium. Rev. Econ. Stud. 13 (1945– 1946) 1–9. | DOI

[12] A. Porretta and E. Zuazua, Long time versus steady state optimal control. SIAM J. Control Optim. 51 (2013) 4242–4273. | DOI | MR | Zbl

[13] P.A. Samuelson, A catenary turnpike theorem involving consumption and the golden rule. Am. Econ. Rev. 55 (1965) 486–496.

[14] E. Trélat and C. Zhang, Integral and measure-turnpike properties for infinite-dimensional optimal control systems. Math. Control Signals Syst. 30 (2018) 3. | DOI | MR | Zbl

[15] E. Trélat and E. Zuazua, The turnpike property in infinite-dimensional nonlinear optimal control, J. Differ. Equ. 258 (2015) 81–114. | DOI | MR | Zbl

[16] J. Warga, Optimal Control of Differential and Functional Equations. Academic Press, New York (1972). | MR | Zbl

[17] A.J. Zaslavski, Turnpike Property in the Calculus of Variations and Optimal Control. Springer, New York (2006). | MR | Zbl

Cité par Sources :