Duality theory for multi-marginal optimal transport with repulsive costs in metric spaces
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 62.

In this paper we extend the duality theory of the multi-marginal optimal transport problem for cost functions depending on a decreasing function of the distance (not necessarily bounded). This class of cost functions appears in the context of SCE Density Functional Theory introduced in Strong-interaction limit of density-functional theory by Seidl [Phys. Rev. A 60 (1999) 4387].

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018062
Classification : 49N15, 49J45, 49K30
Mots-clés : Multi-marginal optimal transport, repulsive costs, Kantorovich duality
Gerolin, Augusto 1 ; Kausamo, Anna 1 ; Rajala, Tapio 1

1
@article{COCV_2019__25__A62_0,
     author = {Gerolin, Augusto and Kausamo, Anna and Rajala, Tapio},
     title = {Duality theory for multi-marginal optimal transport with repulsive costs in metric spaces},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018062},
     zbl = {1439.49059},
     mrnumber = {4023129},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018062/}
}
TY  - JOUR
AU  - Gerolin, Augusto
AU  - Kausamo, Anna
AU  - Rajala, Tapio
TI  - Duality theory for multi-marginal optimal transport with repulsive costs in metric spaces
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018062/
DO  - 10.1051/cocv/2018062
LA  - en
ID  - COCV_2019__25__A62_0
ER  - 
%0 Journal Article
%A Gerolin, Augusto
%A Kausamo, Anna
%A Rajala, Tapio
%T Duality theory for multi-marginal optimal transport with repulsive costs in metric spaces
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018062/
%R 10.1051/cocv/2018062
%G en
%F COCV_2019__25__A62_0
Gerolin, Augusto; Kausamo, Anna; Rajala, Tapio. Duality theory for multi-marginal optimal transport with repulsive costs in metric spaces. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 62. doi : 10.1051/cocv/2018062. http://www.numdam.org/articles/10.1051/cocv/2018062/

[1] U. Bindini and L. De Pascale, Optimal transport with Coulomb cost and the semiclassical limit of density functional theory. J. Éc. Polytech. Math. 4 (2017) 909–934. | DOI | MR | Zbl

[2] A. Braides, Gamma-Convergence for Beginners, Vol. 22. Clarendon Press, Oxford (2002). | DOI | MR | Zbl

[3] G. Buttazzo, T. Champion and L. De Pascale, Continuity and estimates for multimarginal optimal transportation problems with singular costs. Appl. Math. Optim. 78 (2018) 185–200. | DOI | MR | Zbl

[4] G. Buttazzo, L. De Pascale and P. Gori-Giorgi, Optimal-transport formulation of electronic density-functional theory. Phys. Rev. A 85 (2012) 062502. | DOI

[5] H. Chen, G. Friesecke and C. B. Mendl, Numerical methods for a kohn–sham density functional model based on optimal transport. J. Chem. Theory Comput. 10 (2014) 4360–4368. | DOI

[6] M. Colombo and F. Stra, Counterexamples to multimarginal optimal transport maps with coulomb cost and radial measures. Math. Models Methods Appl. Sci. 26 (2016) 1025–1049. | DOI | MR | Zbl

[7] L. Cort, D. Karlsson, G. Lani and R. Van Leeuwen, Time-dependent density-functional theory for strongly interacting electrons. Phys. Rev. A 95 (2017) 042505. | DOI

[8] C. Cotar, G. Friesecke and C. Klüppelberg, Density functional theory and optimal transportation with coulomb cost. Comm. Pure Appl. Math. 66 (2013) 548–599. | DOI | MR | Zbl

[9] C. Cotar, G. Friesecke and C. Klüppelberg, Smoothing of transport plans with fixed marginals and rigorous semiclassical limit of the Hohenberg-Kohn functional. Arch. Ration. Mech. Anal. 228 (2018) 891–922. | DOI | MR | Zbl

[10] L. De Pascale, Optimal transport with coulomb cost. approximation and duality. ESAIM: M2AN 49 (2015) 1643–1657. | DOI | Numdam | MR | Zbl

[11] S. Di Marino, L. De Pascale and M. Colombo, Multimarginal optimal transport maps for 1-dimensional repulsive costs. Can. J. Math. 67 (2015) 350–368. | DOI | MR | Zbl

[12] S. Di Marino, A. Gerolin and L. Nenna, Topological Optimization and Optimal Transport In the Applied Sciences. De Gruyter (2017).

[13] G. Friesecke, C. B. Mendl, B. Pass, C. Cotar and C. Klüppelberg, N-density representability and the optimal transport limit of the hohenberg-kohn functional. J. Chem. Phys. 139 (2013) 164109. | DOI

[14] W. Gangbo and V. Oliker, Existence of optimal maps in the reflector-type problems. ESAIM: COCV 13 (2007) 93–106. | Numdam | MR | Zbl

[15] A. Gerolin, A. Kausamo and T. Rajala, Non-existence of optimal transport maps for the multi-marginal repulsive harmonic cost. Preprint (2018). | arXiv | MR

[16] P. Gori-Giorgi, M. Seidl and G. Vignale, Density-functional theory for strongly interacting electrons. Phys. Rev. Lett. 103 (2009) 166402. | DOI

[17] W. E. Hartnett and A. H. Kruse, Differentiation of set functions using Vitali coverings. Trans. Amer. Math. Soc. 96 (1960) 185–209. | DOI | MR | Zbl

[18] P. Hohenberg and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136 (1964) B864. | DOI | MR

[19] A. Käenmäki, T. Rajala and V. Suomala, Existence of doubling measures via generalised nested cubes. Proc. Am. Math. Soc. 140 (2012) 3275–3281. | DOI | MR | Zbl

[20] H. G. Kellerer, Duality theorems for marginal problems. Z. Wahrscheinlichkeitstheor. Verw. Geb. 67 (1984) 399–432. | DOI | MR | Zbl

[21] G. Lani, S. Di Marino, A. Gerolin, R. Van Leeuwen, and P. Gori-Giorgi, The adiabatic strictly-correlated-electrons functional: kernel and exact properties. Phys. Chem. Chem. Phys. 18 (2016) 21092–21101. | DOI

[22] M. Levy, 2016 Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc. Nati. Acad. Sci. 12 (76) 6062–6065. | MR

[23] M. Lewin, Semi-classical limit of the Levy-Lieb functional in density functional theory. C. R. Math. Acad. Sci. Paris 356 (2018) 449–455. | DOI | MR | Zbl

[24] E. H. Lieb, Density functionals for coulomb systems, in Inequalities. Springer, Berlin, Heidelberg (2002) 269–303. | DOI

[25] F. Malet and P. Gori-Giorgi, Strong in Kohn-Sham density functional theory. Phys. Rev. Lett. 109 (2012) 246402. | DOI

[26] M. Seidl, Strong-interaction limit of density-functional theory. Phys. Rev. A, 60 (1999) 4387. | DOI

[27] M. Seidl, S. Di Marino, A. Gerolin, L. Nenna, K. Giesbertz and P. Gori-Giorgi, The strictly-correlated electron functional for spherically symmetric systems revisited. Preprint (2017). | arXiv

[28] M. Seidl, P. Gori-Giorgi and A. Savin, Strictly correlated electrons in density-functional theory: a general formulation with applications to spherical densities. Phys. Rev. A 75 (2007) 042511. | DOI

[29] C. Villani. Optimal Transport: old and New, Vol. 338. Springer Science & Business Media, Berlin, Heidelberg (2008). | Zbl

[30] X.-J. Wang, On the design of a reflector antenna ii. Calc. Var. Partial Differ. Equ. 20 (2004) 329.–341. | DOI | MR | Zbl

Cité par Sources :