A gradient system with a wiggly energy and relaxed EDP-convergence
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 68.

For gradient systems depending on a microstructure, it is desirable to derive a macroscopic gradient structure describing the effective behavior of the microscopic scale on the macroscopic evolution. We introduce a notion of evolutionary Gamma-convergence that relates the microscopic energy and the microscopic dissipation potential with their macroscopic limits via Gamma-convergence. This new notion generalizes the concept of EDP-convergence, which was introduced in [26], and is now called relaxed EDP-convergence. Both notions are based on De Giorgi’s energy-dissipation principle (EDP), however the special structure of the dissipation functional in terms of the primal and dual dissipation potential is, in general, not preserved under Gamma-convergence. By using suitable tiltings we study the kinetic relation directly and, thus, are able to derive a unique macroscopic dissipation potential. The wiggly-energy model of Abeyaratne-Chu-James (1996) serves as a prototypical example where this nontrivial limit passage can be fully analyzed.

DOI : 10.1051/cocv/2018058
Classification : 35K55, 35B27, 35A15, 49S05, 49J40, 49J45
Mots-clés : Variational evolution, energy functional, dissipation potential, gradient flows, Gamma convergence, EDP-convergence, energy-dissipation, balance, homogenization
Dondl, Patrick 1 ; Frenzel, Thomas 1 ; Mielke, Alexander 1

1
@article{COCV_2019__25__A68_0,
     author = {Dondl, Patrick and Frenzel, Thomas and Mielke, Alexander},
     title = {A gradient system with a wiggly energy and relaxed {EDP-convergence}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018058},
     mrnumber = {4027693},
     zbl = {1444.35101},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018058/}
}
TY  - JOUR
AU  - Dondl, Patrick
AU  - Frenzel, Thomas
AU  - Mielke, Alexander
TI  - A gradient system with a wiggly energy and relaxed EDP-convergence
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018058/
DO  - 10.1051/cocv/2018058
LA  - en
ID  - COCV_2019__25__A68_0
ER  - 
%0 Journal Article
%A Dondl, Patrick
%A Frenzel, Thomas
%A Mielke, Alexander
%T A gradient system with a wiggly energy and relaxed EDP-convergence
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018058/
%R 10.1051/cocv/2018058
%G en
%F COCV_2019__25__A68_0
Dondl, Patrick; Frenzel, Thomas; Mielke, Alexander. A gradient system with a wiggly energy and relaxed EDP-convergence. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 68. doi : 10.1051/cocv/2018058. http://www.numdam.org/articles/10.1051/cocv/2018058/

[1] R. Abeyaratne and J.K. Knowles, On the dissipative response due to discontinuous strains in bars of unstable elastic material. Int. J. Solids Struct. 24 (1988) 1021–1044. | DOI | MR | Zbl

[2] R. Abeyaratne and J.K. Knowles, On the kinetics of an austenite → martensite phase transformation induced by impact in a CuAlNi shape-memory alloy. Acta Mater. 45 (1997) 1671–1683. | DOI

[3] N. Ansini, A. Braides and J. Zimmer, Minimising movements for oscillating energies: the critical regime. Proc. R. Soc. Edinb. 149 (2019) 719–737. | DOI | MR | Zbl

[4] R. Abeyaratne, C.-H. Chu and R. James, Kinetics of materials with wiggly energies: theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy. Philos. Mag. A 73 (1996) 457–497. | DOI

[5] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2005). | MR | Zbl

[6] H. Attouch, Variational Convergence of Functions and Operators. Pitman Advanced Publishing Program, Pitman (1984). | MR | Zbl

[7] M. Buliga, G. De Saxcé, and C. Valleé, Existence and construction of bipotentials for graphs of multivalued laws. J. Convex Anal. 15 (2008) 87–104. | MR | Zbl

[8] M. Buliga, G. De Saxcé and C. Valleé, Non maximal cyclically monotone graphs and construction of a bipotential for the Coulomb’s dry friction law. J. Convex. Anal. 17 (2008) 81–94. | MR | Zbl

[9] K. Bhattacharya, Phase boundary propagation in a heterogeneous body. R. Soc. Lond. Proc. Ser. A: Math. Phys. Eng. Sci. 455 (1999) 757–766. | DOI | MR | Zbl

[10] G.A. Bonaschi and M.A. Peletier, Quadratic and rate-independent limits for a large-deviations functional. Contin. Mech. Thermodyn. 28 (2016) 1191–1219. | DOI | MR | Zbl

[11] A. Braides, Γ-Convergence for Beginners. Oxford University Press, Oxford (2002). | DOI | MR | Zbl

[12] A. Braides, Local Minimization, Variational Evolution and Gamma-convergence. Lecture Notes in Mathematics Vol. 2094. Springer, Berlin (2013). | MR

[13] M. Buliga and G. De Saxcé, A symplectic Brezis-Ekeland-Nayroles principle. Math. Mech. Solids 22 (2017) 1288–1302. | DOI | MR | Zbl

[14] G. Dal Maso, An Introduction to Γ-Convergence. Birkhäuser Boston Inc., Boston, MA (1993). | DOI | MR | Zbl

[15] P.W. Dondl, M.W. Kurzke and S. Wojtowytsch, The effect of forest dislocations on the evolution of a phase-field model for plastic slip. Arch. Ration. Mech. Anal. 232 (2019) 65–119. | DOI | MR | Zbl

[16] E. De Giorgi, A. Marino and M. Tosques, Problems of evolution in metric spaces and maximal decreasing curve. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 68 (1980) 180–187. | MR | Zbl

[17] M. Efendiev and A. Mielke, On the rate–independent limit of systems with dry friction and small viscosity. J. Convex Anal. 13 (2006) 151–167. | MR | Zbl

[18] I. Ekeland and R. Temam, Convex Analysis and Variational Problems. North Holland, Amsterdam (1976). | MR | Zbl

[19] J. Escobar and R. Clifton, On pressure-shear plate impact for studying the kinetics of stress-induced phase transformations. Mater. Sci. Eng. A 170 (1993) 125–142. | DOI

[20] W. Fenchel, On conjugate convex functions. Can. J. Math. 1 (1949) 73–77. | DOI | MR | Zbl

[21] A. Garroni and S. Müller, Gamma-limit of a phase-field model of dislocations. SIAM J. Math. Anal. 36 (2005) 1943–1964. | DOI | MR | Zbl

[22] A. Garroni and S. Müller, A variational model for dislocations in the line tension limit. Arch. Ration. Mech. Anal. 181 (2006) 535–578. | DOI | MR | Zbl

[23] P. Gidoni and A. Desimone, On the genesis of directional friction through bristle-like mediating elements crawler. ESAIM: COCV 23 (2017) 1023–1046. | Numdam | MR | Zbl

[24] R. D. James, Hysteresis in phase transformations, in ICIAM 95 (Hamburg, 1995), vol. 87 of Mathematical Research. Akademie Verlag, Berlin (1996) 135–154. | MR | Zbl

[25] M. Liero, Variational Methods for Evolution. Ph. D. thesis, Institut für Mathematik, Humboldt-Universität zu Berlin (2012).

[26] M. Liero, A. Mielke, M.A. Peletier and D.R.M. Renger, On microscopic origins of generalized gradient structures. Discrete Continuous Dyn. Syst. Ser. S 10 (2017) 1–35. | MR | Zbl

[27] M. Liero, A. Mielke and G. Savaré, Optimal entropy-transport problems and a new Hellinger–Kantorovich distance between positive measures. Invent. Math. 211 (2018) 969–1117. | DOI | MR | Zbl

[28] G. Menon, Gradient systems with wiggly energies and related averaging problems. Arch. Ration. Mech. Anal. 162 (2002) 193–246. | DOI | MR | Zbl

[29] A. Mielke, Complete-damage evolution based on energies and stresses. Discrete Continuous Dyn. Syst. Ser. S 4 (2011) 423–439. | MR | Zbl

[30] A. Mielke, Emergence of rate-independent dissipation from viscous systems with wiggly energies. Continuum Mech. Thermodyn. 24 (2012) 591–606. | DOI | MR | Zbl

[31] A. Mielke, On evolutionary Γ-convergence for gradient systems, Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity, In Proc. of Summer School in Twente University, June 2012. Lecture Notes in Applied Mathematics Mechanics vol. 3, edited by A. Muntean, J. Rademacher and A. Zagaris. Springer, Switzerland (2016) 187–249. | MR

[32] A. Mielke and L. Truskinovsky, From discrete visco-elasticity to continuum rate-independent plasticity: rigorous results. Arch. Ration. Mech. Anal. 203 (2012) 577–619. | DOI | MR | Zbl

[33] A. Mielke, A. Montefusco and M.A. Peletier, Exploring families of energy-dissipation landscapes via tilting – three types of edp convergence. In preparation (2019). | MR

[34] L. Modica and S. Mortola, Un esempio di Γ-convergenza. Boll. Un. Mat. Ital. B 14 (1977) 285–299. | MR | Zbl

[35] R. E. Monneau and S. Patrizi, Homogenization of the Peierls-Nabarro model for dislocation dynamics. J. Differ. Equ. 253 (2012) 2064–2105. | DOI | MR | Zbl

[36] A. Mielke, M.A. Peletier and D.R.M. Renger, On the relation between gradient flows and the large-deviation principle, with applications to Markov chains and diffusion. Potential Anal. 41 (2014) 1293–1327. | DOI | MR | Zbl

[37] A. Mielke, R. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete Continuous Dyn. Syst. Ser. A 25 (2009) 585–615. | DOI | MR | Zbl

[38] A. Mielke, R. Rossi and G. Savaré, BV solutions and viscosity approximations of rate-independent systems. ESAIM: COCV 18 (2012) 36–80. | Numdam | MR | Zbl

[39] A. Mielke, R. Rossi and G. Savaré, Nonsmooth analysis of doubly nonlinear evolution equations. Calc. Var. Part. Diff. Eqn. 46 (2013) 253–310. | DOI | MR | Zbl

[40] A. Mielke, R. Rossi and G. Savaré, Balanced-viscosity (BV) solutions to infinite-dimensional rate-independent systems. J. Eur. Math. Soc. 18 (2016) 2107–2165. | DOI | MR | Zbl

[41] V.L. Popov and J.A.T. Gray, Prandtl-Tomlinson model: history and applications in friction, plasticity, and nanotechnologies. Z. Angew. Math. Mech. (ZAMM) 92 (2012) 692–708. | MR | Zbl

[42] L. Prandtl, Gedankenmodel zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech. (ZAMM) 8 (1928) 85–106. | DOI | JFM

[43] M.A. Peletier, F. Redig and K. Vafayi, Large deviations in stochastic heat-conduction processes provide a gradient-flow structure for heat conduction. J. Math. Phys. 55 (2014) 093301/19. | DOI | MR | Zbl

[44] G. Puglisi and L. Truskinovsky, A mechanism of transformational plasticity. Continuum Mech. Thermodyn. 14 (2002) 437–457. | DOI | MR | Zbl

[45] G. Puglisi and L. Truskinovsky, Rate independent hysteresis in a bi-stable chain. J. Mech. Phys. Solids 50 (2002) 165–187. | DOI | MR | Zbl

[46] G. Puglisi and L. Truskinovsky, Thermodynamics of rate-independent plasticity. J. Mech. Phys. Solids 53 (2005) 655–679. | DOI | MR | Zbl

[47] R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton (1970). | DOI | MR | Zbl

[48] E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau. Commun. Pure Appl. Math. 57 (2004) 1627–1672. | DOI | MR | Zbl

[49] S. Serfaty, Gamma-convergence of gradient flows on Hilbert spaces and metric spaces and applications. Discrete Continuous Dyn. Syst. Ser. A 31 (2011) 1427–1451. | DOI | MR | Zbl

[50] T.J. Sullivan, M. Koslowski, F. Theil and M. Ortiz, On the behaviour of dissipative systems in contact with a heat bath: application to andrade creep. J. Mech. Phys. Solids 57 (2009) 1058–1077. | DOI | MR | Zbl

[51] U. Stefanelli, The Brezis-Ekeland principle for doubly nonlinear equations. SIAM J. Control Optim. 47 (2008) 1615–1642. | DOI | MR | Zbl

[52] T.J. Sullivan, Analysis of Gradient Descents in Random Energies and Heat Baths. Ph.D. thesis, Dept. of Mathematics, University of Warwick (2009).

[53] G.A. Tomlinson, A molecular theory of friction. Philos. Mag. 7 (1929) 905–939. | DOI

[54] A. Visintin, Variational formulation and structural stability of monotone equations. Calc. Var. Part. Diff. Eqn. 47 (2013) 273–317. | DOI | MR | Zbl

[55] A. Visintin, Structural stability of flows via evolutionary Γ-convergence of weak-type. Preprint (2015). | arXiv

[56] A. Visintin, Evolutionary Γ-convergence of weak type. Preprint (2017). | arXiv

[57] A. Visintin, Structural compactness and stability of pseudo-monotone flows. Preprint (2017). | arXiv | MR

Cité par Sources :