This paper is concerned with the parameter estimation and boundary feedback stabilization for the linear Korteweg-de Vries equation posed on a finite interval with the boundary observation at the right end and the non-collocated control at the left end. The boundary observation suffers from some unknown disturbance. An adaptive observer is designed and the adaptive laws of the parameters are obtained by the Lyapunov method. The resulted closed-loop system is proved to be well-posed and asymptotically stable in case that the length of the interval is not critical. Moreover, it is shown that the estimated parameter converges to the unknown parameter. As a by-product, a hidden regularity result is proved.
Accepté le :
DOI : 10.1051/cocv/2018057
Mots-clés : Korteweg-de Vries equation, output feedback stabilization, adaptive observer, hidden regularity
@article{COCV_2019__25__A76_0, author = {Jia, Chaohua and Guo, Wei and Luo, Diao}, title = {Parameter estimation and output feedback stabilization for the linear {Korteweg-de} {Vries} equation with disturbed boundary measurement}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {25}, year = {2019}, doi = {10.1051/cocv/2018057}, mrnumber = {4039138}, zbl = {1437.35075}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2018057/} }
TY - JOUR AU - Jia, Chaohua AU - Guo, Wei AU - Luo, Diao TI - Parameter estimation and output feedback stabilization for the linear Korteweg-de Vries equation with disturbed boundary measurement JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2019 VL - 25 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2018057/ DO - 10.1051/cocv/2018057 LA - en ID - COCV_2019__25__A76_0 ER -
%0 Journal Article %A Jia, Chaohua %A Guo, Wei %A Luo, Diao %T Parameter estimation and output feedback stabilization for the linear Korteweg-de Vries equation with disturbed boundary measurement %J ESAIM: Control, Optimisation and Calculus of Variations %D 2019 %V 25 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2018057/ %R 10.1051/cocv/2018057 %G en %F COCV_2019__25__A76_0
Jia, Chaohua; Guo, Wei; Luo, Diao. Parameter estimation and output feedback stabilization for the linear Korteweg-de Vries equation with disturbed boundary measurement. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 76. doi : 10.1051/cocv/2018057. http://www.numdam.org/articles/10.1051/cocv/2018057/
[1] A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain. Comm. Partial Differ. Equ. 28 (2003) 1391–1436. | DOI | MR | Zbl
, and ,[2] Non-homogeneous boundary value problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane. Ann. Inst. Henri Poincaré 25 (2008) 1145–1185. | DOI | Numdam | MR | Zbl
, and ,[3] Rapid stabilization for a Korteweg-de Vries equation from left Dirichlet boundary condition. IEEE Trans. Auto. Control 58 (2013) 1688–1695. | DOI | MR | Zbl
and ,[4] Rapid exponential stabilization for a linear Korteweg-de Vries equation. Discrete Contin. Dyn. Syst. Ser. B 11 (2009) 655–668. | MR | Zbl
and ,[5] Local rapid stabilization for a Korteweg-de Vries equation with a Neumann boundary control on the right. J. Math. Pures Appl. 102 (2014) 1080–1120. | DOI | MR | Zbl
and ,[6] Semi-groups of nonlinear contractions and dissipative sets. J. Funct. Anal. 3 (1969) 376–418. | DOI | MR | Zbl
and ,[7] Asymptotic behavior of nonlinear contraction semigroups. J. Funct. Anal. 13 (1973) 97–106. | DOI | MR | Zbl
and ,[8] Parameter estimation and stabilization for a one-dimensional wave equation with boundary output constant disturbance and non-collocated control. Int. J. Control 84 (2011) 381–395. | DOI | MR | Zbl
and ,[9] Parameter estimation and stabilization for one-dimensional Schrödinger equation with boundary output constant disturbance and non-collocated control. J. Franklin Inst. 352 (2015) 2047–2064. | DOI | MR | Zbl
, , , and ,[10] Output-Feedback Stabilization of the Korteweg-de Vries Equation. 24th Mediterranean Conference on Control and Automation (MED), Athens, Greece (2016) 871–876.
,[11] Boundary feedback stabilization of the Korteweg-de Vries-Burgers equation posed on a finite interval. J. Math. Anal. Appl. 444 (2016) 624–47. | DOI | MR | Zbl
,[12] Boundary stabilization of the Korteweg-de Vries equation and the Korteweg-de Vries-Burgers equation. Acta Appl. Math. 118 (2012) 25–47. | DOI | MR | Zbl
and ,[13] Well-posedness of a class of non-homogeneous boundary value problems of the Korteweg-de Vries equation on a finite domain. ESAIM: COCV 19 (2013) 358–384. | Numdam | MR | Zbl
, and ,[14] Adaptive boundary control for unstable parabolic PDEs – part I: Lyapunov design. IEEE Trans. Autom. Control 53 (2008) 1575–1591. | DOI | MR | Zbl
and ,[15] Stability and Stabilization of Infinite Dimensional Systems with Applications. Springer-Verlag, London (1998). | MR | Zbl
, and ,[16] Output feedback stabilization of the Korteweg-de Vries equation. Automatica 87 (2018) 210–217. | DOI | MR | Zbl
and ,[17] Output feedback control of the linear Korteweg-de Vries equation. 53rd IEEE Conference on Decision and Control, Los Angeles, USA (2014) 2083–2087. | DOI
and ,[18] Stabilization of the Korteweg-de Vries equation with localized damping. Quart. Appl. Math. 60 (2002) 111–129. | DOI | MR | Zbl
, and ,[19] Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM: COCV 2 (1997) 33–55. | Numdam | MR | Zbl
,[20] Stabilization of linearized Korteweg-de Vries systems with anti-diffusion. 2013 American Control Conference, Washington DC, USA (2013) 3302–3307. | DOI
and ,[21] Stabilization of linearized Korteweg-de Vries systems with anti-diffusion by boundary feedback with non-collocated observation. 2015 American Control Conference, Palmer House Hilton, USA (2015) 1959–1964. | DOI
and ,[22] Admissible observation operators for linear semigroups. Israel J. Math. 65 (1989) 17–43. | DOI | MR | Zbl
,[23] Admissibility of unbounded control operators. SIAM J. Control Optim. 27 (1989) 527–545. | DOI | MR | Zbl
,[24] Boundary stabilization of the Korteweg-de Vries equations. Int. Series Numer. Math. 118 (1994) 371–389. | MR | Zbl
,Cité par Sources :