Ergodic control of infinite-dimensional stochastic differential equations with degenerate noise
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 12.

This paper is devoted to the study of the asymptotic behaviour of the value functions of both finite and infinite horizon stochastic control problems and to the investigation of their relationship with suitable stochastic ergodic control problems. Our methodology is based only on probabilistic techniques, as, for instance, the so-called randomisation of the control method, thus avoiding completely analytical tools from the theory of viscosity solutions. We are then able to treat with the case where the state process takes values in a general (possibly infinite-dimensional) real separable Hilbert space, and the diffusion coefficient is allowed to be degenerate.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018056
Classification : 60H15, 60H30, 37A50
Mots-clés : Ergodic control, infinite-dimensional SDEs, BSDEs, randomisation of the control method
Cosso, Andrea 1 ; Guatteri, Giuseppina 1 ; Tessitore, Gianmario 1

1
@article{COCV_2019__25__A12_0,
     author = {Cosso, Andrea and Guatteri, Giuseppina and Tessitore, Gianmario},
     title = {Ergodic control of infinite-dimensional stochastic differential equations with degenerate noise},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018056},
     zbl = {1437.60037},
     mrnumber = {3959140},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018056/}
}
TY  - JOUR
AU  - Cosso, Andrea
AU  - Guatteri, Giuseppina
AU  - Tessitore, Gianmario
TI  - Ergodic control of infinite-dimensional stochastic differential equations with degenerate noise
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018056/
DO  - 10.1051/cocv/2018056
LA  - en
ID  - COCV_2019__25__A12_0
ER  - 
%0 Journal Article
%A Cosso, Andrea
%A Guatteri, Giuseppina
%A Tessitore, Gianmario
%T Ergodic control of infinite-dimensional stochastic differential equations with degenerate noise
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018056/
%R 10.1051/cocv/2018056
%G en
%F COCV_2019__25__A12_0
Cosso, Andrea; Guatteri, Giuseppina; Tessitore, Gianmario. Ergodic control of infinite-dimensional stochastic differential equations with degenerate noise. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 12. doi : 10.1051/cocv/2018056. http://www.numdam.org/articles/10.1051/cocv/2018056/

[1] A. Bain and D. Crisan, Fundamentals of stochastic filtering, Stochastic Modelling and Applied Probability, Vol. 60. Springer, New York (2009). | DOI | MR | Zbl

[2] E. Bandini, A. Cosso, M. Fuhrman and H. Pham, Backward SDEs for optimal control of partially observed path-dependent stochastic systems: a control randomised approach. Ann. Appl. Probab. 28 (2018) 1634–1678. | DOI | MR | Zbl

[3] S. Choukroun and A. Cosso, Backward SDE representation for stochastic control problems with nondominated controlled intensity. Ann. Appl. Probab. 26 (2016) 1208–1259. | DOI | MR | Zbl

[4] K.L. Chung and R.J. Williams, Introduction to stochastic integration, in Probability and its Applications, 2nd edn. Birkhäuser, Boston, MA (1990). | MR | Zbl

[5] A. Cosso, M. Fuhrman and H. Pham, Long time asymptotics for fully nonlinear Bellman equations: a backward SDE approach. Stochastic Process. Appl. 126 (2016) 1932–1973. | DOI | MR | Zbl

[6] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, in Encyclopedia of Mathematics and its Applications, Vol. 44. Cambridge University Press, Cambridge (1992). | MR | Zbl

[7] A. Debussche, Y. Hu and G. Tessitore, Ergodic BSDEs under weak dissipative assumptions. Stochastic Process. Appl. 121 (2011) 407–426. | DOI | MR | Zbl

[8] G. Fabbri, F. Gozzi and A. Świȩch, Stochastic optimal control in infinite dimension, Dynamic programming and HJB equations, with a contribution by M. Fuhrman and G. Tessitore, in Probability Theory and Stochastic Modelling, Vol. 82. Springer, Cham (2017). | DOI | MR

[9] M. Fuhrman, Y. Hu and G. Tessitore, Ergodic BSDEs and optimal ergodic control in Banach spaces. SIAM J. Control Optim. 48 (2009) 1542–1566. | DOI | MR | Zbl

[10] M. Fuhrman and H. Pham, Randomized and backward SDE representation for optimal control of non-Markovian SDEs. Ann. Appl. Probab. 25 (2015) 2134–2167. | DOI | MR | Zbl

[11] M. Fuhrman and G. Tessitore, The Bismut–Elworthy formula for backward SDEs and applications to nonlinear Kolmogorov equations and control in infinite dimensional spaces. Stoch. Stoch. Rep. 74 (2002) 429–464. | DOI | MR | Zbl

[12] M. Fuhrman and G. Tessitore, Nonlinear Kolmogorov equations in infinite dimensional spaces: the backward stochastic differential equations approach and applications to optimal control. Ann. Appl. Probab. 30 (2002) 1397–1465. | MR | Zbl

[13] S. W. He and J. G. Wang, The property of predictable representation of the sum of independent semimartingales. Z. Wahrsch. Verw. Gebiete 61 (1982) 141–152. | DOI | MR | Zbl

[14] Y. Hu, P.-Y. Madec and A. Richou, A probabilistic approach to large time behavior of mild solutions of HJB equations in infinite dimension. SIAM J. Control Optim. 53 (2015) 378–398. | DOI | MR | Zbl

[15] Y. Hu and G. Tessitore, BSDE on an infinite horizon and elliptic PDEs in infinite dimension. NoDEA Nonlinear Differential Equations Appl. 14 (2007) 825–846. | DOI | MR | Zbl

[16] J. Jacod and A.N. Shiryaev, Limit theorems for stochastic processes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edn., Vol. 288. Springer-Verlag, Berlin (2003). | DOI | MR | Zbl

[17] I. Kharroubi and H. Pham, Feynman–Kac representation for Hamilton–Jacobi–Bellman IPDE. Ann. Appl. Probab. 43 (2015) 1823–1865. | MR | Zbl

[18] A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Modern Birkhäuser Classics. (2013 reprint of the 1995 original) Birkhäuser/Springer, Basel AG, Basel  (1995). | MR | Zbl

[19] H. Sagan, Space-filling curves. Universitext. Springer-Verlag, New York (1994). | DOI | MR | Zbl

[20] A. Świȩch, “Unbounded” second order partial differential equations in infinite-dimensional Hilbert spaces. Comm. Partial Differential Equations 19 (1994) 1999–2036. | MR | Zbl

Cité par Sources :