We address the double bubble problem for the anisotropic Grushin perimeter P$$, α ≥ 0, and the Lebesgue measure in ℝ2, in the case of two equal volumes. We assume that the contact interface between the bubbles lies on either the vertical or the horizontal axis. We first prove existence of minimizers via the direct method by symmetrization arguments and then characterize them in terms of the given area by first variation techniques. Even though no regularity theory is available in this setting, we prove that angles at which minimal boundaries intersect satisfy the standard 120-degree rule up to a suitable change of coordinates. While for α = 0 the Grushin perimeter reduces to the Euclidean one and both minimizers coincide with the symmetric double bubble found in Foisy et al. [Pacific J. Math. 159 (1993) 47–59], for α = 1 vertical interface minimizers have Grushin perimeter strictly greater than horizontal interface minimizers. As the latter ones are obtained by translating and dilating the Grushin isoperimetric set found in Monti and Morbidelli [J. Geom. Anal. 14 (2004) 355–368], we conjecture that they solve the double bubble problem with no assumptions on the contact interface.
Accepté le :
DOI : 10.1051/cocv/2018055
Mots-clés : Calculus of variations, shape optimization, sub-Riemannian manifold, Grushin perimeter, double bubble problem, constrained interface, 120-degree rule
@article{COCV_2019__25__A77_0, author = {Franceschi, Valentina and Stefani, Giorgio}, title = {Symmetric double bubbles in the {Grushin} plane}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {25}, year = {2019}, doi = {10.1051/cocv/2018055}, mrnumber = {4039139}, zbl = {1439.53033}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2018055/} }
TY - JOUR AU - Franceschi, Valentina AU - Stefani, Giorgio TI - Symmetric double bubbles in the Grushin plane JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2019 VL - 25 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2018055/ DO - 10.1051/cocv/2018055 LA - en ID - COCV_2019__25__A77_0 ER -
%0 Journal Article %A Franceschi, Valentina %A Stefani, Giorgio %T Symmetric double bubbles in the Grushin plane %J ESAIM: Control, Optimisation and Calculus of Variations %D 2019 %V 25 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2018055/ %R 10.1051/cocv/2018055 %G en %F COCV_2019__25__A77_0
Franceschi, Valentina; Stefani, Giorgio. Symmetric double bubbles in the Grushin plane. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 77. doi : 10.1051/cocv/2018055. http://www.numdam.org/articles/10.1051/cocv/2018055/
[1] Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Mem. Am. Math. Soc. 4 (1976) 165. | MR | Zbl
,[2] Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monograph. The Clarendon Press, Oxford University Press, New York (2000). | MR | Zbl
, and ,[3] Rigidity of equality cases in Steiner’s perimeter inequality. Anal. PDE 7 (2014) 1535–1593. | DOI | MR | Zbl
, , and ,[4] The perimeter inequality under Steiner symmetrization: cases of equality. Ann. Math. 162 (2005) 525–555. | DOI | MR | Zbl
, and ,[5] Double bubbles in Gauss space and spheres. Houston J. Math. 34 (2008) 181–204. | MR | Zbl
, , , , , , , , and ,[6] The double bubble problem on the flat two-torus. Trans. Amer. Math. Soc. 356 (2004) 3769–3820. | DOI | MR | Zbl
, , , , and ,[7] The double bubble problem in spherical space and hyperbolic space. Int. J. Math. Math. Sci. 32 (2002) 641–699. | DOI | MR | Zbl
and ,[8] Proof of the planar double bubble conjecture using metacalibration methods. Involve 2 (2009) 611–628. | DOI | MR | Zbl
, , and ,[9] Measure Theory and Fine Properties of Functions. Revised edition, Textbooks in Mathematics. CRC Press, Boca Raton, FL (2015). | MR | Zbl
and ,[10] The standard double soap bubble in R2 uniquely minimizes perimeter. Pacific J. Math. 159 (1993) 47–59. | DOI | MR | Zbl
, , , and ,[11] A minimal partition problem with trace constraint in the Grushin plane. Calc. Var. Partial Differ. Equ. 56 (2017) 104. | DOI | MR | Zbl
,[12] Isoperimetric problem in H-type groups and Grushin spaces. Rev. Mat. Iberoam. 32 (2016) 1227–1258. | DOI | MR | Zbl
and ,[13] Double bubbles minimize. Ann. Math. 151 (2000) 459–515. | DOI | MR | Zbl
and ,[14] Proof of the double bubble conjecture. Ann. Math. 155 (2002) 459–489. | DOI | MR | Zbl
, , and ,[15] The double bubble problem on the cone. N.Y. J. Math. 12 (2006) 157–167. | MR | Zbl
and ,[16] Sets of Finite Perimeter and Geometric Variational Problems. Vol. 135 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2012) | MR | Zbl
,[17] The perimeter-minimizing enclosure of two areas in S2. Real Anal. Exchange 22 (1996/97) 645–654. | DOI | MR | Zbl
,[18] Minimal surfaces and harmonic functions in the Heisenberg group, Nonlin. Anal. 126 (2015) 378–393. | DOI | MR | Zbl
,[19] Isoperimetric inequality in the Grushin plane J. Geom. Anal. 14 (2004) 355–368. | DOI | MR | Zbl
and ,[20] Improved Lipschitz approximation of H-perimeter minimizing boundaries (English, with English and French summaries). J. Math. Pures Appl. 108 (2017) 372–398. | DOI | MR | Zbl
and ,[21] Height estimate and slicing formulas in the Heisenberg group. Anal. PDE 8 (2015) 1421–1454. | DOI | MR | Zbl
and ,[22] Soap bubbles in R2 and in surfaces. Pacific J. Math. 165 (1994) 347–361. | DOI | MR | Zbl
,[23] Geometric Measure Theory, 5th ed. Elsevier/ Press, Amsterdam (2016). | MR
,[24] Une inégalité isopérimétrique sur le groupe de Heisenberg. C. R. Acad. Sci. Paris Sér. I Math. 295 (1982) 127–130. | MR | Zbl
,[25] Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires. Gauthier-Villars, Paris (1873). | JFM
,[26] Proof of the double bubble conjecture in Rn. J. Geom. Anal. 18 (2008) 172–191. | DOI | MR | Zbl
,[27] The isoperimetric problem, in Global Theory of Minimal Surfaces. Vol. 2 of Clay Mathematics Proceedings. American Mathematical Society, Providence, RI (2005) 175–209 | MR | Zbl
,[28] The structure of singularities in area-related variational problems with constraints. Bull. Amer. Math. Soc. 81 (1975) 1093–1095. | DOI | MR | Zbl
,[29] Regularity of the singular sets in immiscible fluid interfaces and solutions to other Plateau-type problems. Miniconference on geometry and partial differential equations. In Vol. 10 of Proceedings of the Centre Mathematical Analysis. The Australian National University, Canberra (1986) 244–249. | MR | Zbl
,[30] Proof of the planar triple bubble conjecture. J. Reine Angew. Math. 567 (2004) 1–49. | DOI | MR | Zbl
,Cité par Sources :