Explicit exponential stabilization of nonautonomous linear parabolic-like systems by a finite number of internal actuators
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 67.

An explicit feedback controller is proposed for stabilization of linear parabolic equations, with a time-dependent reaction–convection operator. The range of the feedback controller is finite-dimensional, and is typically modeled by indicator functions of small subdomains. Its dimension depends polynomially on a suitable norm of the reaction–convection operator. A sufficient condition for stabilizability is given, which involves the asymptotic behavior of the eigenvalues of the (time-independent) diffusion operator, the norm of the reaction–convection operator, and the norm of the nonorthogonal projection onto the controller’s range along a suitable infinite-dimensional (higher-modes) eigenspace. To construct the explicit feedback, the essential step consists in computing the nonorthogonal projection. Numerical simulations are presented, in 1D and 2D, showing the practicability of the controller and its response to measurement errors, where the actuators are indicator functions of suitable small subsets.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018054
Classification : 93D15, 93B52, 93C05, 93C20
Mots-clés : Exponential stabilization, nonautonomous parabolic systems, finite-dimensional controller, explicit feedback
Kunisch, Karl 1 ; Rodrigues, Sérgio S. 1

1
@article{COCV_2019__25__A67_0,
     author = {Kunisch, Karl and Rodrigues, S\'ergio S.},
     title = {Explicit exponential stabilization of nonautonomous linear parabolic-like systems by a finite number of internal actuators},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018054},
     zbl = {1436.93106},
     mrnumber = {4027692},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018054/}
}
TY  - JOUR
AU  - Kunisch, Karl
AU  - Rodrigues, Sérgio S.
TI  - Explicit exponential stabilization of nonautonomous linear parabolic-like systems by a finite number of internal actuators
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018054/
DO  - 10.1051/cocv/2018054
LA  - en
ID  - COCV_2019__25__A67_0
ER  - 
%0 Journal Article
%A Kunisch, Karl
%A Rodrigues, Sérgio S.
%T Explicit exponential stabilization of nonautonomous linear parabolic-like systems by a finite number of internal actuators
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018054/
%R 10.1051/cocv/2018054
%G en
%F COCV_2019__25__A67_0
Kunisch, Karl; Rodrigues, Sérgio S. Explicit exponential stabilization of nonautonomous linear parabolic-like systems by a finite number of internal actuators. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 67. doi : 10.1051/cocv/2018054. http://www.numdam.org/articles/10.1051/cocv/2018054/

[1] K. Ammari, T. Duyckaerts and A. Shirikyan, Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation. Math. Control Relat. Fields 6 (2016) 1–25. | DOI | MR | Zbl

[2] M. Badra and T. Takahashi, Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: application to the Navier–Stokes system. SIAM J. Control Optim. 49 (2011) 420–463. | DOI | MR | Zbl

[3] H.T. Banks and K. Kunisch, The linear regulator problem for parabolic systems. SIAM J. Control Optim. 22 (1984) 684–698. | DOI | MR | Zbl

[4] V. Barbu, Stabilization of Navier–Stokes flows. Communications and Control Engineering Series. Springer-Verlag, London (2011). | MR | Zbl

[5] V. Barbu, Stabilization of Navier–Stokes equations by oblique boundary feedback controllers. SIAM J. Control Optim. 50 (2012) 2288–2307. | DOI | MR | Zbl

[6] V. Barbu, Boundary stabilization of equilibrium solutions to parabolic equations. IEEE Trans. Automat. Control 58 (2013) 2416–2420. | DOI | MR | Zbl

[7] V. Barbu, I. Lasiecka and R. Triggiani, Abstract settings for tangential boundary stabilization of Navier–Stokes equations by high- and low-gain feedback controllers. Nonlinear Anal. 64 (2006) 2704–2746. | DOI | MR | Zbl

[8] V. Barbu, S.S. Rodrigues and A. Shirikyan, Internal exponential stabilization to a nonstationary solution for 3D Navier–Stokes equations. SIAM J. Control Optim. 49 (2011) 1454–1478. | DOI | MR | Zbl

[9] V. Barbu and R. Triggiani, Internal stabilization of Navier–Stokes equations with finite-dimensional controllers. Indiana Univ. Math. J. 53 (2004) 1443–1494. | DOI | MR | Zbl

[10] P. Benner, A matlab repository for model reduction based on spectral projection. In Proc. ofthe 2006 IEEE Conference on Computer Aided Control Systems Design, October 4–6 (2006) 19–24.

[11] P. Benner, A.J. Laub and V. Mehrmann, Benchmarks for the numerical solution of algebraic Riccati equations. IEEE Control Syst. Mag. 17 (1997) 18–28. | DOI

[12] T. Breiten, K. Kunisch and S.S. Rodrigues, Feedback stabilization to nonstationary solutions of a class of reaction diffusion equationsof FitzHugh–Nagumo type. SIAM J. Control Optim. 55 (2017) 2684–2713. | DOI | MR | Zbl

[13] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations. In Universitext. Springer, New York (2011). | MR | Zbl

[14] J.A. Burns, E.W. Sachs and L. Zietsman, Mesh independence of Kleinman–Newton iterations for Riccati equations in Hilbert space. SIAM J. Control Optim. 47 (2008) 2663–2692. | DOI | MR | Zbl

[15] J.-M. Coron, Control and Nonlinearity. Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007). | MR | Zbl

[16] J.-M. Coron and E. Trélat, Global steady-state controllability of one-dimensional semilinear heat equations. SIAM J. Control Optim. 43 (2004) 549–569. | DOI | MR | Zbl

[17] J.-M. Coron and E. Trélat, Global steady-state stabilization and controllability of 1D semilinear wave equations. Commun. Contemp. Math. 8 (2006) 535–567. | DOI | MR | Zbl

[18] T. Duyckaerts, X. Zhang and E. Zuazua, On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials. Ann. Inst. Henri Poincaré Anal. Non Linéaire 25 (2008) 1–41. | DOI | Numdam | MR | Zbl

[19] A.V. Fursikov and O. Yu Imanuvilov, Controllability of Evolution Equations. Vol. 34 of Lecture Notes Series. Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul (1996). | MR | Zbl

[20] A. Halanay, C.M. Murea and C.A. Safta, Numerical experiment for stabilization of the heat equation by Dirichlet boundary control. Numer. Funct. Anal. Optim. 34 (2013) 1317–1327. | DOI | MR | Zbl

[21] D. Kalise, K. Kunisch and K. Sturm, Optimal actuator design based on shape calculus. Math. Models Methods Appl. Sci. 28 (2018) 2667–2717. | DOI | MR | Zbl

[22] A. Kröner and S.S. Rodrigues, Internal exponential stabilization to a nonstationary solution for 1D Burgers equations with piecewise constant controls, in Proc. ofthe 2015 European Control Conference (ECC), Linz, Austria (2015) 2676–2681. | DOI

[23] A. Kröner and S.S. Rodrigues, Remarks on the internal exponential stabilization to a nonstationary solution for 1D Burgers equations. SIAM J. Control Optim. 53 (2015) 1020–1055. | DOI | MR | Zbl

[24] P. Kunkel and V. Mehrmann, Numerical solution of differential algebraic Riccati equations. Linear Algebra Appl. 137/138 (1990) 39–66. | DOI | MR | Zbl

[25] P. Li and S.-T. Yau, On the Schrödinger equation and the eigenvalue problem. Commun. Math. Phys. 88 (1983) 309–318. | DOI | MR | Zbl

[26] J.-L. Lions, Optimal control of systems governed by partial differential equations. In Vol. 170 of Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen. Springer-Verlag, Berlin, Heidelberg (1971). | Zbl

[27] K. Morris, Linear-quadratic optimal actuator location. IEEE Trans. Automat. Control 56 (2011) 113–124. | DOI | MR | Zbl

[28] K. Morris and S. Yang, A study of optimal actuator placement for control of diffusion, in Proc. ofthe 2016 American Control Conference (AAC), Boston, MA, USA (2016) 2566–2571. | DOI

[29] I. Munteanu, Boundary stabilisation to non-stationary solutions for deterministic and stochastic parabolic-type equations. Int. J. Control 92 (2019) 1720–1728. | DOI | MR | Zbl

[30] D. Phan and S.S. Rodrigues, Stabilization to trajectories for parabolic equations. Math. Control Signals Syst. 30 (2018) 11. | DOI | MR

[31] D. Phan and S.S. Rodrigues, Gevrey regularity for Navier–Stokes equations under Lions boundary conditions. J. Funct. Anal. 272 (2017) 2865–2898. | DOI | MR | Zbl

[32] Y. Privat, E. Trélat and E. Zuazua, Actuator design for parabolic distributed parameter systems with the moment method. SIAM J. Control Optim. 55 (2017) 1128–1152. | DOI | MR | Zbl

[33] J.-P. Raymond and L. Thevenet, Boundary feedback stabilization of the two-dimensional Navier–Stokes equations with finite-dimensional controllers. Discrete Contin. Dyn. Syst. 27 (2010) 1159–1187. | DOI | MR | Zbl

[34] S.S. Rodrigues, Feedback boundary stabilization to trajectories for 3D Navier–Stokes equations. Appl. Math. Optim. (2018). DOI: . | DOI | MR

[35] D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20 (1978) 639–739. | DOI | MR | Zbl

[36] M. Schmidt and E. Trélat, Controllability of Couette flows. Commun. Pure Appl. Anal. 5 (2006) 201–211. | DOI | MR | Zbl

[37] R. Temam, Navier–Stokes equations and nonlinear functional analysis, in Vol. 66 of CBMS-NSF Regional Conference Series in Applied Mathematics, 2nd edition, SIAM, Philadelphia (1995). | MR | Zbl

[38] R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis. Reprint of the 1984 edition, AMS Chelsea Publishing, Providence, RI (2001). | MR | Zbl

[39] M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups. Birkhäuser Basel, Basel (2009). | DOI | MR | Zbl

[40] M.Y. Wu, A note on stability of linear time-varying systems. IEEE Trans. Automat. Control 19 (1974) 162. | DOI | MR

[41] M. Yamamoto, Carleman estimates for parabolic equations and applications. Inverse Probl. 25 (2009) 123013. | DOI | MR | Zbl

[42] J. Zabczyk, Mathematical Control Theory: An Introduction. Systems Theory, Control. Birkhäuser, Boston (1992). | MR

Cité par Sources :