Convergence analysis of time-discretisation schemes for rate-independent systems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 65.

It is well known that rate-independent systems involving nonconvex energy functionals in general do not allow for time-continuous solutions even if the given data are smooth. In the last years, several solution concepts were proposed that include discontinuities in the notion of solution, among them the class of global energetic solutions and the class of BV-solutions. In general, these solution concepts are not equivalent and numerical schemes are needed that reliably approximate that type of solutions one is interested in. In this paper, we analyse the convergence of solutions of three time-discretisation schemes, namely an approach based on local minimisation, a relaxed version of it and an alternate minimisation scheme. For all three cases, we show that under suitable conditions on the discretisation parameters discrete solutions converge to limit functions that belong to the class of BV-solutions. The proofs rely on a reparametrisation argument. We illustrate the different schemes with a toy example.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018048
Classification : 49J27, 49J40, 35Q74, 65M12, 74C05, 74H15
Mots-clés : Rate-independent system, local minimisation scheme, alternate minimisation scheme, convergence analysis of time-discrete schemes, parametrised BV-solution
Knees, Dorothee 1

1
@article{COCV_2019__25__A65_0,
     author = {Knees, Dorothee},
     title = {Convergence analysis of time-discretisation schemes for rate-independent systems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018048},
     zbl = {1437.49009},
     mrnumber = {4023124},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018048/}
}
TY  - JOUR
AU  - Knees, Dorothee
TI  - Convergence analysis of time-discretisation schemes for rate-independent systems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018048/
DO  - 10.1051/cocv/2018048
LA  - en
ID  - COCV_2019__25__A65_0
ER  - 
%0 Journal Article
%A Knees, Dorothee
%T Convergence analysis of time-discretisation schemes for rate-independent systems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018048/
%R 10.1051/cocv/2018048
%G en
%F COCV_2019__25__A65_0
Knees, Dorothee. Convergence analysis of time-discretisation schemes for rate-independent systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 65. doi : 10.1051/cocv/2018048. http://www.numdam.org/articles/10.1051/cocv/2018048/

[1] M. Artina, F. Cagnetti, M. Fornasier and F. Solombrino, Linearly constrained evolutions of critical points and an application to cohesive fractures. Math. Models Methods Appl. Sci. 27 (2017) 231–290. | DOI | MR | Zbl

[2] B. Bourdin, G. Francfort and J.-J. Marigo, Numerical experiments in revisited brittle fracture. Mech. Phys. Solids 48 (2000) 797–826. | DOI | MR | Zbl

[3] J. Dieudonné, Foundations of Modern Analysis. Enlarged and Corrected Printing. Academic Press, New York-London (1969), 387. | MR | Zbl

[4] M.A. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity. J. Convex Anal. 13 (2006) 151–167. | MR | Zbl

[5] A. Ioffe and V. Tikhomirov, Theorie der Extremalaufgaben. Übersetzung aus dem Russischen von Bernd Luderer. VEB Deutscher Verlag der Wissenschaften, Berlin (1979). | MR | Zbl

[6] D. Knees and M. Negri, Convergence of alternate minimization schemes for phase-field fracture and damage. Math. Models Methods Appl. Sci. 27 (2017) 1743–1794. | DOI | MR | Zbl

[7] D. Knees, R. Rossi and C. Zanini, A vanishing viscosity approach to a rate-independent damage model. Math. Models Methods Appl. Sci. 23 (2013) 565–616. | Zbl

[8] D. Knees and A. Schröder, Computational aspects of quasi-static crack propagation. Discrete Contin. Dyn. Syst. Ser. S 6 (2013) 63–99. | Zbl

[9] A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems. Calc. Var. Partial Differ. Equ. 22 (2005) 73–99. | DOI | MR | Zbl

[10] A. Mielke, Evolution of rate-independent systems. Vol II of Handbook of Differential Equations: Evolutionary Equations. Elsevier/North-Holland, Amsterdam (2005) 461–559. | MR | Zbl

[11] A. Mielke, R. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete Contin. Dyn. Syst. 25 (2009) 585–615. | DOI | MR | Zbl

[12] A. Mielke, R. Rossi and G. Savaré, BV solutions and viscosity approximations of rate-independent systems. ESAIM: COCV 18 (2012) 36–80. | Numdam | MR | Zbl

[13] A. Mielke, R. Rossi and G. Savaré, Variational convergence of gradient flows and rate-independent evolutions in metric spaces. Milan J. Math. 80 (2012) 381–410. | DOI | MR | Zbl

[14] A. Mielke, R. Rossi and G. Savaré, Balanced viscosity (BV) solutions to infinite-dimensional rate-independent systems. J. Eur. Math. Soc. (JEMS) 18 (2016) 2107–2165. | DOI | MR | Zbl

[15] A. Mielke and T. Roubíček, Rate-Independent Systems: Theory and Application. Springer, New York, NY (2015).

[16] A. Mielke and A.M. Timofte, An energetic material model for time-dependent ferroelectric behaviour: existence and uniqueness. Math. Methods Appl. Sci. 29 (2006) 1393–1410. | DOI | MR | Zbl

[17] A. Mielke and S. Zelik, On the vanishing-viscosity limit in parabolic systems with rate-independent dissipation terms. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13 (2014) 67–135. | MR | Zbl

[18] M.N. Minh, Weak solutions to rate-independent systems: existence and regularity. Ph.D. thesis, Università di Pisa (2012).

[19] L. Minotti and G. Savaré, Viscous corrections of the time incremental minimization scheme and visco-energetic solutions to rate-independent evolution problems. Arch. Ration. Mech. Anal. 227 (2018) 477–543. | DOI | MR | Zbl

[20] M. Negri, Quasi-static rate-independent evolutions: characterization, existence, approximation and application to fracture mechanics. ESAIM: COCV 20 (2014) 983–1008. | Numdam | MR | Zbl

[21] M. Negri and R. Scala, A quasi-static evolution generated by local energy minimizers for an elastic material with a cohesive interface. Nonlinear Anal. Real World Appl. 38 (2017) 271–305. | DOI | MR | Zbl

[22] R. Rossi and G. Savaré, From visco-energetic to energetic and balanced viscosity solutions of rate-independent systems, in Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs: In Honour of Prof. Gianni Gilardi. Springer, Cham (2017) 489–531. | DOI | MR | Zbl

[23] T. Roubíček, M. Thomas and C. Panagiotopoulos, Stress-driven local-solution approach to quasistatic brittle delamination. Nonlinear Anal. Real World Appl. 22 (2015) 645–663. | DOI | MR | Zbl

[24] D. Schrade, M.-A. Keip, H. Thai, J. Schröder, B. Svendsen, R. Müller and D. Gross, Coordinate-invariant phase field modeling of ferroelectrics, part I: model formulation and single-crystal simulations. GAMM-Mitt. 38 (2015) 102–114. | DOI | MR | Zbl

[25] M. Valadier, Young measures, in Methods of Nonconvex Analysis (Varenna, 1989.) Vol. 1446 of Lecture Notes in Mathematics. Springer, Berlin (1990) 152–188. | Zbl

[26] J. Wloka, Partial Differential Equations. Cambridge University Press, Cambridge (1987). | MR | Zbl

Cité par Sources :