Stability of error bounds for conic subsmooth inequalities
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 55.

Under either linearity or convexity assumption, several authors have studied the stability of error bounds for inequality systems when the concerned data undergo small perturbations. In this paper, we consider the corresponding issue for a more general conic inequality (most of the constraint systems in optimization can be described by an inequality of this type). In terms of coderivatives for vector-valued functions, we study perturbation analysis of error bounds for conic inequalities in the subsmooth setting. The main results of this paper are new even in the convex/smooth case.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018047
Classification : 49J52, 49J53, 90C31, 90C25
Mots-clés : Conic inequality, error bound, subdifferential, quasi-subsmoothness
Zheng, Xi Yin 1 ; Ng, Kung-Fu 1

1
@article{COCV_2019__25__A55_0,
     author = {Zheng, Xi Yin and Ng, Kung-Fu},
     title = {Stability of error bounds for conic subsmooth inequalities},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018047},
     zbl = {1439.49029},
     mrnumber = {4023128},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018047/}
}
TY  - JOUR
AU  - Zheng, Xi Yin
AU  - Ng, Kung-Fu
TI  - Stability of error bounds for conic subsmooth inequalities
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018047/
DO  - 10.1051/cocv/2018047
LA  - en
ID  - COCV_2019__25__A55_0
ER  - 
%0 Journal Article
%A Zheng, Xi Yin
%A Ng, Kung-Fu
%T Stability of error bounds for conic subsmooth inequalities
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018047/
%R 10.1051/cocv/2018047
%G en
%F COCV_2019__25__A55_0
Zheng, Xi Yin; Ng, Kung-Fu. Stability of error bounds for conic subsmooth inequalities. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 55. doi : 10.1051/cocv/2018047. http://www.numdam.org/articles/10.1051/cocv/2018047/

[1] D. Aussel, A. Daniilidis and L. Thibault, Subsmooth sets: functional characterizations and related concepts. Trans. Am. Math. Soc. 357 (2005) 1275–1301. | DOI | MR | Zbl

[2] D. Azé and J.-N. Corvellec, Characterizations of error bounds for lower semicontinuous functions on metric spaces. ESAIM: COCV 10 (2004) 409–425. | Numdam | MR | Zbl

[3] F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley, New York (1983). | MR | Zbl

[4] A.L. Dontchev and R.T. Rockafellar, Implicit Functions and Solution Mappings. Springer, New York (2009). | DOI | MR | Zbl

[5] M. El Maghri and M. Laghdir, Pareto subdifferential calculus for convex vectormappings and applications to vector optimization. SIAM J. Optim. 19 (2009) 1970–1994. | DOI | MR | Zbl

[6] M. Fabian, R. Henrion, A. Kruger and J.V. Outrata, Error bounds: necessary and sufficient conditions. Set-Valued Var. Anal. 18 (2010) 121–149. | DOI | MR | Zbl

[7] C. Gutiérrez, L. Huerga, V. Novo and L. Thibault, Chain rules for a Pproper ε-subdifferential of vector mappings. J. Optim. Theory Appl. 167 (2015) 502–26. | DOI | MR

[8] A.J. Hoffman, On approximate solutions of systems of linear inequalities. J. Res. Natl. Bur. Stand. 49 (1952) 263–265. | DOI | MR

[9] A.D. Ioffe, Metric regularity – A survey Part 1, theory. J. Aust. Math. Soc. 101 (2016) 188–243. | DOI | MR | Zbl

[10] A.D. Ioffe and V.L. Levin, Subdifferentials of convex functions. Trans. Moscow Math. Soc. 26 (1972) 1–72. | MR | Zbl

[11] J. Jahn, Vector Optimization, Theory, Applications and Extensions. Springer, Berlin (2011). | DOI | Zbl

[12] A.Y. Kruger, M.A. López and M.A. Théra, Perturbation of error bounds. Math. Program., Ser. B. 168 (2018) 533–554. | DOI | MR | Zbl

[13] A. Kruger, H.V. Ngai and M. Thera, Stability of error bounds for convex constraint systems in Banach spaces. SIAM J. Optim. 20 (2010) 3280–3290. | DOI | MR | Zbl

[14] A.S. Lewis and J.S. Pang, Error bounds for convex inequality systems. Generalized Convexity, edited by J.P. Crouzeix. Proceedings of the Fifth Symposium on Generalized Convexity. Luminy Marseille (1997) 75–100. | MR | Zbl

[15] W. Li, Abadie’s constraint qualification, metric regularity, and error bounds for differentiable convex inequalities. SIAM J. Optim. 7 (1997) 966–978. | DOI | MR | Zbl

[16] Z.-Q. Luo and P. Tseng, Perturbation analysis of a condition number for linear systems. SIAM J. Matrix Anal. Appl. 15 (1994) 636–660. | DOI | MR | Zbl

[17] B.S. Mordukhovich, Variational Analysis and Generalized Differentiation I/II. Springer-Verlag, Berlin, Heidelberg (2006). | MR | Zbl

[18] R.E. Megginson, An Introduction to Banach Space Theory. Springer-Verlag, New York (1998). | DOI | MR | Zbl

[19] H.V. Ngai, M. Théra, Error bounds for systems of lower semicontinuous functions in Asplund spaces. Math. Program. 116 (2009) 397–427. | DOI | MR | Zbl

[20] H.V. Ngai, A. Kruger and M. Théra, Stability of error bounds for semi-infinite convex constraint systems. SIAM J. Optim. 20 (2010) 2080–2096. | DOI | MR | Zbl

[21] K.F. Ng and X.Y. Zheng, Error bounds for lower semicontinuous functions in normed spaces. SIAM J. Optim. 12 (2001) 1–17. | DOI | MR | Zbl

[22] J.S. Pang, Error bounds in mathematical programming. Math. Program. 79 (1997) 299–332. | DOI | MR | Zbl

[23] R.A. Poliquin, An extension of Attouch’s theorem and its applications to second order epi-differentiation of convexly composite functions. Trans. Am. Math. Soc. 332 (1992) 861–874. | MR | Zbl

[24] S.M. Robinson, An application of error bound for convex programming in a linear space. SIAM Control. Optim. 13 (1975) 271–273. | DOI | MR | Zbl

[25] Z. Wu and J.J. Ye, On error bounds for lower semicontinuous functions. Math. Program. 92 (2002) 301–314. | DOI | MR | Zbl

[26] C. Zalinescu, Weak sharp minima, well-behaving functions and global error bounds for convex inequalities in Banach spaces, in: Proceedings of the 12th Baikal International Conference on Optimization Methods and Their Applications, Irkutsk, Russia (2001) 272–284.

[27] X.Y. Zheng and K.F. Ng, Error bound moduli for conic convex systems on Banach spaces. Math. Oper. Res.29 (2004) 213–228. | DOI | MR | Zbl

[28] X.Y. Zheng and K.F. Ng, Perturbation analysis of error bounds for systems of conic linear inequalities in Banach spaces. SIAM J. Optim. 15 (2005) 1026–1041. | DOI | MR | Zbl

[29] X.Y. Zheng and K.F. Ng, Subsmooth semi-infinite and infinite optimization problems. Math. Program. 134 (2012) 365–393. | DOI | MR | Zbl

[30] X.Y. Zheng and W. Ouyang, Metric subregularity for composite-convex generalized equations in Banach spaces. Nonlinear Anal. 74 (2011) 3311–3323. | DOI | MR | Zbl

[31] X.Y. Zheng and Z. Wei, Perturbation analysis of error bounds for quasi-subsmooth inequalities and semi-infinite constraint systems. SIAM J. Optim. 22 (2012) 41–65. | DOI | MR | Zbl

Cité par Sources :