Designing metrics; the delta metric for curves
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 59.

In the first part, we revisit some key notions. Let M be a Riemannian manifold. Let G be a group acting on M. We discuss the relationship between the quotient M∕G, “horizontality” and “normalization”. We discuss the distinction between path-wise invariance and point-wise invariance and how the former positively impacts the design of metrics, in particular for the mathematical and numerical treatment of geodesics. We then discuss a strategy to design metrics with desired properties.

In the second part, we prepare methods to normalize some standard group actions on the curve; we design a simple differential operator, called the delta operator, and compare it to the usual differential operators used in defining Riemannian metrics for curves.

In the third part we design two examples of Riemannian metrics in the space of planar curves. These metrics are based on the “delta” operator; they are “modular”, they are composed of different terms, each associated to a group action. These are “strong” metrics, that is, smooth metrics on the space of curves, that is defined as a differentiable manifolds, modeled on the standard Sobolev space H2. These metrics enjoy many important properties, including: metric completeness, geodesic completeness, existence of minimal length geodesics. These metrics properly project on the space of curves up to parameterization; the quotient space again enjoys the above properties.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018044
Classification : 49Q10, 53A04, 53C22, 58B20, 58D10, 58D15, 58E10
Mots-clés : Riemannian metric, manifold of curves, shape space, Hilbert manifold, Sobolev space, geodesic, Fréchet mean
Mennucci, Andrea C.G. 1

1
@article{COCV_2019__25__A59_0,
     author = {Mennucci, Andrea C.G.},
     title = {Designing metrics; the delta metric for curves},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018044},
     mrnumber = {4023127},
     zbl = {1437.49059},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018044/}
}
TY  - JOUR
AU  - Mennucci, Andrea C.G.
TI  - Designing metrics; the delta metric for curves
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018044/
DO  - 10.1051/cocv/2018044
LA  - en
ID  - COCV_2019__25__A59_0
ER  - 
%0 Journal Article
%A Mennucci, Andrea C.G.
%T Designing metrics; the delta metric for curves
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018044/
%R 10.1051/cocv/2018044
%G en
%F COCV_2019__25__A59_0
Mennucci, Andrea C.G. Designing metrics; the delta metric for curves. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 59. doi : 10.1051/cocv/2018044. http://www.numdam.org/articles/10.1051/cocv/2018044/

[1] M. Bauer and P. Harms, Metrics on spaces of immersions where horizontality equals normality. Diff. Geom. Appl. 39 (2015) 166–183. | DOI | MR | Zbl

[2] M. Bauer, M. Bruveris and P.W. Michor, Why use Sobolev metrics on the space of curves, in Riemannian Computing in Computer Vision, edited by P.K. Turaga and A. Srivastava. Springer, Cham (2016) 233–255. | DOI | MR

[3] V.I. Bogachev, Measure Theory. Springer-Verlag, Berlin (2007), Vols. I, II. | DOI | MR | Zbl

[4] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011). | DOI | MR | Zbl

[5] M. Bruveris, Completeness properties of Sobolev metrics on the space of curves. J. Geom. Mech. 7 (2015) 125–150. | DOI | MR | Zbl

[6] M. Bruveris, P.W. Michor and D. Mumford, Geodesic completeness for Sobolev metrics on the space of immersed plane curves. Forum Math. Sigma 2 (2014) e19. | DOI | MR | Zbl

[7] B. Dacorogna, Direct methods in the calculus of variations, Vol. 78 of Applied Mathematical Sciences, 2nd edn. Springer, New York (2008). | MR | Zbl

[8] S. Deiala, Una Metrica Riemanniana Sullo Spazio Delle Curve e Applicazioni. Master’s Thesis, Università di Pisa (2010).

[9] D.G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92 (1970) 102–163. | DOI | MR | Zbl

[10] P. Harms and A. Mennucci, Geodesics in infinite dimensional Stiefel and Grassmann manifolds. C. R. Acad. Sci., Paris, Ser I, Math. 350 (2012) 773–776. | DOI | MR | Zbl

[11] E. Klassen, A. Srivastava, W. Mio and S.H. Joshi, Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004) 372–383. | DOI

[12] S. Lang, Fundamentals of Differential Geometry. Springer–Verlag, New York (1999). | DOI | MR | Zbl

[13] A. Mennucci, Metrics of curves in shape optimization and analysis, in Level Set and PDE Based Reconstruction Methods in Imaging, edited by S. Osher and M. Burger. In Lecture Notes in Mathematics. Springer (2008) 8–13.

[14] P.W. Michor, Topics in Differential Geometry. Vol. 93 of Graduate Studies in Mathematics. American Mathematical Society (2008). | DOI | MR | Zbl

[15] P.W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. (JEMS) 8 (2006) 1–48. | DOI | MR | Zbl

[16] P.W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23 (2007) 76–113. | DOI | MR | Zbl

[17] W. Mio and A. Srivastava, Elastic-string models for representation and analysis of planar shapes, in Conference on Computer Vision and Pattern Recognition (CVPR). Available at: http://stat.fsu.edu/~anuj/pdf/papers/CVPR_Paper_04.pdf (2004).

[18] S. Osher and M. Burger, Level set and PDE based reconstruction methods: applications to inverse problems and image processing, in Lecture Notes in Mathematics. Lectures given at the C.I.M.E. Summer School held in Cetraro (2008) 8–13. Springer-Verlag, Berlin (2013).

[19] A. Srivastava, E. Klassen, S.H. Joshi and I.H. Jermyn, Shape analysis of elastic curves in euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33 (2011) 1415–1428. | DOI

[20] G. Sundaramoorthi, A. Mennucci, S. Soatto and A. Yezzi, A new geometric metric in the space of curves, and applications to tracking deforming objects by prediction and filtering. SIAM J. Imaging Sci. 4 (2011) 109–145. | DOI | MR | Zbl

[21] G. Sundaramoorthi, A. Yezzi and A. Mennucci, Sobolev active contours. Int. J. Comput. Vision 73 (2007) 413–417. | DOI | Zbl

[22] A.B. Tumpach and S.C. Preston, Quotient elastic metrics on the manifold of arc-length parameterized plane curves. J. Geom. Mech. 9 (2017) 227–256. | DOI | MR | Zbl

[23] K. Pavan Turaga and A. Srivastava, Riemannian Computing in Computer Vision. Springer International Publishing (2016). | DOI | MR

[24] A. Yezzi and A. Mennucci, Metrics in the Space of Curves. Preprint (2004). | arXiv

[25] A. Yezzi and A. Mennucci, Conformal metrics and true “gradient flows” for curves, in International Conference on Computer Vision (ICCV05) (2005) 913–919.

[26] L.T. Younes, Computable elastic distances between shapes. SIAM J. Appl. Math. 58 (1998) 565–586. | DOI | MR | Zbl

[27] L. Younes, P.W. Michor, J. Shah and D. Mumford, A metric on shape space with explicit geodesics. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. 19 (2008) 25–57. | DOI | MR | Zbl

Cité par Sources :