On the total variation Wasserstein gradient flow and the TV-JKO scheme
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 42.

We study the JKO scheme for the total variation, characterize the optimizers, prove some of their qualitative properties (in particular a form of maximum principle and in some cases, a minimum principle as well). Finally, we establish a convergence result as the time step goes to zero to a solution of a fourth-order nonlinear evolution equation, under the additional assumption that the density remains bounded away from zero, this lower bound is shown in dimension one and in the radially symmetric case.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018042
Classification : 35G31, 49N15
Mots-clés : Total variation, Wasserstein gradient flows, JKO scheme, fourth-order evolution equations
Carlier, Guillaume 1 ; Poon, Clarice 1

1
@article{COCV_2019__25__A42_0,
     author = {Carlier, Guillaume and Poon, Clarice},
     title = {On the total variation {Wasserstein} gradient flow and the {TV-JKO} scheme},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018042},
     mrnumber = {4009553},
     zbl = {1509.35011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018042/}
}
TY  - JOUR
AU  - Carlier, Guillaume
AU  - Poon, Clarice
TI  - On the total variation Wasserstein gradient flow and the TV-JKO scheme
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018042/
DO  - 10.1051/cocv/2018042
LA  - en
ID  - COCV_2019__25__A42_0
ER  - 
%0 Journal Article
%A Carlier, Guillaume
%A Poon, Clarice
%T On the total variation Wasserstein gradient flow and the TV-JKO scheme
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018042/
%R 10.1051/cocv/2018042
%G en
%F COCV_2019__25__A42_0
Carlier, Guillaume; Poon, Clarice. On the total variation Wasserstein gradient flow and the TV-JKO scheme. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 42. doi : 10.1051/cocv/2018042. http://www.numdam.org/articles/10.1051/cocv/2018042/

[1] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Springer Science & Business Media, Basel (2008). | MR | Zbl

[2] G. Anzellotti, Pairing between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. IV 135 (1983) 293–318. | DOI | MR | Zbl

[3] G. Bellettini, V. Caselles and M. Novaga, The total variation flow in ℝn. J. Differ. Equ. 184 (2002) 475–525. | DOI | MR | Zbl

[4] M. Benning, L. Calatroni, B. Düring and C.-B. Schönlieb, A primal-dual approach for a total variation Wasserstein flow. Geometric Science of Information, Springer, Heidelberg (2013) 413–421. | DOI | MR | Zbl

[5] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44 (1991) 375–417. | DOI | MR | Zbl

[6] H. Brezis, Analyse fonctionnelle. Théorie et applications [Theory and applications]. Collection Mathématiques Appliquées pour la Maîtrise [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris (1983). | MR | Zbl

[7] M. Burger, M. Franek and C.-B. Schönlieb, Regularized regression and density estimation based on optimal transport. Appl. Math. Res. Express 2012 (2012) 209–253. | MR | Zbl

[8] G. Carlier and M. Laborde, A splitting method for nonlinear diffusions with nonlocal, nonpotential drifts. Nonlinear Anal. 150 (2017) 1–18. | DOI | MR | Zbl

[9] A. Chambolle, V. Caselles, D. Cremers, M. Novaga and T. Pock, An introduction to total variation for image analysis, in Theoretical Foundations and Numerical Methods for Sparse Recovery. Vol. 9 of Radon Ser. Comput. Appl. Math. Walter de Gruyter, Berlin (2010) 263–340. | MR | Zbl

[10] A. Chambolle, V. Duval, G. Peyré and C. Poon, Geometric properties of solutions to the total variation denoising problem. Inverse Probl. 33 (2016) 015002. | DOI | MR | Zbl

[11] G. De Philippis, A.R. Mészáros, F. Santambrogio and B. Velichkov, BV estimates in optimal transportation and applications. Arch. Ration. Mech. Anal. 219 (2016) 829–860. | DOI | MR | Zbl

[12] M. Di Francesco and D. Matthes, Curves of steepest descent are entropy solutions for a class of degenerate convection-diffusion equations. Calc. Var. Partial Differ. Equ. 50 (2014) 199–230. | DOI | MR | Zbl

[13] B. Düring and C.-B. Schönlieb, A high-contrast fourth-order pde from imaging: numerical solution by ADI splitting, in Multi-scale and High-Contrast Partial Differential Equations, edited by H. Ammari, et al. (2012) 93–103. | MR | Zbl

[14] L.C. Evans and J. Spruck, Motion of level sets by mean curvature. II Trans. Amer. Math. Soc. 330 (1992) 321–332 | DOI | MR | Zbl

[15] M.-H. Giga and Y. Giga, Very singular diffusion equations: second and fourth order problems. Jpn. J. Ind. Appl. Math. 27 (2010) 323–345. | DOI | MR | Zbl

[16] Y. Giga, H. Kuroda and H. Matsuoka, Fourth-order total variation flow with Dirichlet condition: characterization of evolution and extinction time estimates. Adv. Math. Sci. Appl. 24 (2014) 499–534. | MR | Zbl

[17] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29 (1998) 1–17. | DOI | MR | Zbl

[18] D. Loibl, D. Matthes and J. Zinsl, Existence of weak solutions to a class of fourth order partial differential equations with Wasserstein gradient structure. Potential Anal. 45 (2016) 755–776. | DOI | MR | Zbl

[19] U. Massari, Esistenza e regolarita delle ipersuperfici di curvatura media assegnata in ℝn. Arch. Ration. Mech. Anal. 55 (1974) 357–382. | DOI | MR | Zbl

[20] U. Massari, Frontiere orientate di curvatura media assegnata in Lp. Rend. Sem. Mat. Univ. Padova 53 (1975) 37–52. | Numdam | MR | Zbl

[21] E.G.-U. Massari, Variational mean curvatures. Rend. Sem. Mat. Univ. Pol. Torino 52 (1994) 1–28. | MR | Zbl

[22] D. Matthes, R.J. Mccann and Giuseppe Savaré, A family of nonlinear fourth order equations of gradient flow type. Commun. Partial Differ. Equ. 34 (2009) 1352–1397. | DOI | MR | Zbl

[23] R.J. Mccann, A convexity principle for interacting gases. Adv. Math. 128 (1997) 153–179. | DOI | MR | Zbl

[24] R. Rossi and G. Savaré, Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Ann. Scu. Norm. Super. Pisa-Cl. Sci. 2 (2003) 395–431. | Numdam | MR | Zbl

[25] L.I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms. In Proceedings of the eleventh annual international conference of the Center for Nonlinear Studies on Experimental Mathematics: Computational Issues in Nonlinear Science. Los Alamos, NM (1991). Physics D 60 (1992) 259–268. | MR | Zbl

[26] F. Santambrogio, Optimal Transport for Applied Mathematicians. Calculus of variations, PDEs, and modeling. Vol. 87 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser/Springer, Cham (2015). | DOI | MR | Zbl

[27] I. Tamanini, Boundaries of Caccioppoli sets with Hölder-continuous normal vector. J. für Die Reineund Angewandte Mathematik 334 (1982) 27–39. | MR | Zbl

[28] C. Villani, Topics in Optimal Transportation. Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2003). | MR | Zbl

Cité par Sources :