This paper provides results for variational eigencurves associated with self-adjoint linear elliptic boundary value problems. The elliptic problems are treated as a general two-parameter eigenproblem for a triple (a, b, m) of continuous symmetric bilinear forms on a real separable Hilbert space V . Geometric characterizations of eigencurves associated with (a, b, m) are obtained and are based on their variational characterizations described here. Continuity, differentiability, as well as asymptotic, results for these eigencurves are proved. Finally, two-parameter Robin–Steklov eigenproblems are treated to illustrate the theory.
Accepté le :
DOI : 10.1051/cocv/2018039
Mots-clés : Two-parameter eigenproblems, variational eigencurves, Robin–Steklov eigenproblems
@article{COCV_2019__25__A45_0, author = {Rivas, Mauricio A. and Robinson, Stephen B.}, title = {Eigencurves for linear elliptic equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {25}, year = {2019}, doi = {10.1051/cocv/2018039}, zbl = {1437.35241}, mrnumber = {4009412}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2018039/} }
TY - JOUR AU - Rivas, Mauricio A. AU - Robinson, Stephen B. TI - Eigencurves for linear elliptic equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2019 VL - 25 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2018039/ DO - 10.1051/cocv/2018039 LA - en ID - COCV_2019__25__A45_0 ER -
%0 Journal Article %A Rivas, Mauricio A. %A Robinson, Stephen B. %T Eigencurves for linear elliptic equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2019 %V 25 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2018039/ %R 10.1051/cocv/2018039 %G en %F COCV_2019__25__A45_0
Rivas, Mauricio A.; Robinson, Stephen B. Eigencurves for linear elliptic equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 45. doi : 10.1051/cocv/2018039. http://www.numdam.org/articles/10.1051/cocv/2018039/
[1] On principle eigenvalues for boundary value problems with indefinite weight and Robin boundary conditions. Proc. Amer. Math. Soc. (1999) 125–130. | DOI | MR | Zbl
and ,[2] Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization. MPS-SIAM, Philadelphia (2005). | MR | Zbl
, and ,[3] Bases and comparison results for linear elliptic eigenproblems. J. Math. Anal. Appl. 390 (2012) 394–406. | DOI | MR | Zbl
,[4] Representation of solutions of Laplacian boundary value problems on exterior regions. Appl. Math. Optim. 69 (2014) 21–45. | DOI | MR | Zbl
and ,[5] Laplacian eigenproblems on product regions and tensor products of Sobolev spaces. J. Math. Anal. Appl. 435 (2016) 842–859. | DOI | MR | Zbl
and ,[6] Isoperimetric inequalities for the principle eigenvalue of a membrane and the energy of problems with Robin boundary conditions. J. Convex Anal. 22 (2014) 627–640. | MR | Zbl
and ,[7] Eigencurves for two-parameter Sturm–Liouville equations. SIAM Rev. 38 (1996) 27–48. | DOI | MR | Zbl
and ,[8] Variational Methods in Mathematical Physics. Springer-Verlag, Berlin (1992). | DOI | MR | Zbl
and ,[9] On the asymptotic behaviour of the eigenvalues of a Robin problem. Differ. Integ. Equ. 23 (2010) 659–669. | MR | Zbl
and ,[10] Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992). | MR | Zbl
and ,[11] On the eigenvalues of a Robin problem with a large parameter. Math. Bohem. 139 (2014) 341–352. | DOI | MR | Zbl
,[12] Eigenvalue estimates and critical temperatures in zero fields for enhanced surface superconductivity. Z. Angew. Math. Phys. 58 (2007) 224–245. | DOI | MR | Zbl
and ,[13] Perturbation Theory for Linear Operators, 2nd Edn. Springer-Verlag, New York (1976). | MR | Zbl
,[14] The existence of positive solutions for a class of indefinite weight semilinear elliptic boundary value problems. Nonlin. Anal.: Theory Methods. Appl. 39 (2000) 587–597. | DOI | MR | Zbl
and ,[15] Multidimensional reaction diffusion equations with nonlinear boundary conditions. SIAM J. Appl. Math. 58 (1998) 1622–1647. | DOI | MR | Zbl
, and ,[16] Generalized eigenproblem and nonlinear elliptic equations with nonlinear boundary conditions. Proc. R. Soc. Edinburgh 142A (2012) 137–153. | DOI | MR | Zbl
,[17] Steklov-Neumann eigenproblems and nolinear elliptic equations with nonlinear boundary conditions. J. Differ. Equ. 248 (2010) 1212–1229. | DOI | MR | Zbl
and ,Cité par Sources :