Gradient flow approach to an exponential thin film equation: global existence and latent singularity
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 49.

In this work, we study a fourth order exponential equation, $$ = Δe$$ derived from thin film growth on crystal surface in multiple space dimensions. We use the gradient flow method in metric space to characterize the latent singularity in global strong solution, which is intrinsic due to high degeneration. We define a suitable functional, which reveals where the singularity happens, and then prove the variational inequality solution under very weak assumptions for initial data. Moreover, the existence of global strong solution is established with regular initial data.

DOI : 10.1051/cocv/2018037
Classification : 35K65, 35R06, 49J40
Mots-clés : Fourth-order exponential parabolic equation, Radon measure, global strong solution, latent singularity, curve of maximal slope
Gao, Yuan 1 ; Liu, Jian-Guo 1 ; Lu, Xin Yang 1

1
@article{COCV_2019__25__A49_0,
     author = {Gao, Yuan and Liu, Jian-Guo and Lu, Xin Yang},
     title = {Gradient flow approach to an exponential thin film equation: global existence and latent singularity},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018037},
     zbl = {1442.35185},
     mrnumber = {4017919},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018037/}
}
TY  - JOUR
AU  - Gao, Yuan
AU  - Liu, Jian-Guo
AU  - Lu, Xin Yang
TI  - Gradient flow approach to an exponential thin film equation: global existence and latent singularity
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018037/
DO  - 10.1051/cocv/2018037
LA  - en
ID  - COCV_2019__25__A49_0
ER  - 
%0 Journal Article
%A Gao, Yuan
%A Liu, Jian-Guo
%A Lu, Xin Yang
%T Gradient flow approach to an exponential thin film equation: global existence and latent singularity
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018037/
%R 10.1051/cocv/2018037
%G en
%F COCV_2019__25__A49_0
Gao, Yuan; Liu, Jian-Guo; Lu, Xin Yang. Gradient flow approach to an exponential thin film equation: global existence and latent singularity. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 49. doi : 10.1051/cocv/2018037. http://www.numdam.org/articles/10.1051/cocv/2018037/

[1] H. Al Hajj Shehadeh, R.V. Kohn and J. Weare, The evolution of a crystal surface: analysis of a one-dimensional step train connecting two facets in the adl regime. Physica D 240 (2011) 1771–1784. | DOI | Zbl

[2] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Birkhäuser Verlag, Basel (2008). | MR | Zbl

[3] V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer, New York (2010). | DOI | MR | Zbl

[4] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2010). | MR | Zbl

[5] H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. Elsevier, North-Holland (1973). | MR | Zbl

[6] F. Demengel and R. Temam, Convex functions of a measure and applications. Indiana Univ. Math. J. 33 (1984) 673–709. | DOI | MR | Zbl

[7] E. Weinan and N.K. Yip, Continuum theory of epitaxial crystal growth – I. J. Stat. Phys. 104 (2001) 221–253. | DOI | MR | Zbl

[8] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions: Studies in Advanced Mathematics. CRC Press, Boca Raton (1992). | MR | Zbl

[9] I. Fonseca, G. Leoni and X.Y. Lu, Regularity in time for weak solutions of a continuum model for epitaxial growth with elasticity on vicinal surfaces. Commun. Part. Differ. Equ. 40 (2015) 1942–1957. | DOI | MR | Zbl

[10] G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems. Springer Science & Business Media, New York (2011). | MR | Zbl

[11] Y. Gao, J.-G. Liu and J. Lu, Continuum limit of a mesoscopic model with elasticity of step motion on vicinal surfaces. J. Nonlinear Sci. 27 (2017) 873–926. | DOI | MR | Zbl

[12] Y. Gao, J.-G. Liu and J. Lu, Weak solution of a continuum model for vicinal surface in the attachment-detachment-limited regime. SIAM J. Math. Anal. 49 (2017) 1705–1731. | DOI | MR | Zbl

[13] Y. Gao, J.-G. Liu , X.Y. Lu and X. Xu, Maximal monotone operator theory and its applications to thin film equation in epitaxial growth on vicinal surface. Calc. Var. Part. Differ. Equ. 57 (2018) 55. | DOI | MR | Zbl

[14] Y. Giga and R.V. Kohn, Scale-invariant extinction time estimates for some singular diffusion equations. Discr. Continuous Dyn. Syst. A 30 (2011) 509–535. | DOI | MR | Zbl

[15] C. Goffman and J. Serrin, Sublinear functions of measures and variational integrals. Duke Math. J. 31 (1964) 159–178. | DOI | MR | Zbl

[16] H.-C. Jeong and E.D. Williams, Steps on surfaces: experiment and theory. Surf. Sci. Rep. 34 (1999) 171–294. | DOI

[17] R.V. Kohn, Surface relaxation below the roughening temperature: some recent progress and open questions, in Nonlinear Partial Differential Equations: The Abel Symposium 2010, edited by H. Holden and H.K. Karlsen. Springer, Berlin, Heidelberg (2012) 207–221. | MR | Zbl

[18] R.V. Kohn, E. Versieux, Numerical analysis of a steepest-descent PDE model for surface relaxation below the roughening temperature. SIAM J. Num. Anal. 48 (2010) 1781–1800. | DOI | MR | Zbl

[19] B. Krishnamachari, J. Mclean, B. Cooper, J. Sethna, Gibbs–Thomson formula for small island sizes: corrections for high vapor densities. Phys. Rev. B 54 (1996) 8899–8907 | DOI

[20] J. Krug, H.T. Dobbs, S. Majaniemi, Adatom mobility for the solid-on-solid model. Z. Phys. B 97 (1995) 281–291. | DOI

[21] J.-G. Liu, J. Lu, D. Margetis and J.L. Marzuola, Asymmetry in crystal facet dynamics of homoepitaxy by a continuum model. Physica D: Nonlin. Phenom. 393 (2019) 54–67. | DOI | MR | Zbl

[22] J.-G. Liu and X. Xu, Existence theorems for a multi-dimensional crystal surface model. SIAM J. Math. Anal. 48 (2016) 3667–3687 | DOI | MR | Zbl

[23] D. Margetis and R.V. Kohn, Continuum relaxation of interacting steps on crystal surfaces in 2 + 1 dimensions. Multiscale Model. Simul. 5 (2006) 729–758. | DOI | MR | Zbl

[24] J.L. Marzuola and J. Weare, Relaxation of a family of broken-bond crystal-surface models. Phys. Rev. E 88 (2013) 032403. | DOI

[25] J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity. Clarendon Press, Oxford (1982).

[26] M. Ozdemir and A. Zangwill, Morphological equilibration of a corrugated crystalline surface. Phys. Rev. B 42 (1990) 5013–5024. | DOI

[27] A. Pimpinelli and J. Villain, Physics of Crystal Growth. Cambridge University Press, New York (1998). | DOI

[28] F. Santambrogio, Optimal Transport for Applied Mathematicians. Springer, New York (2015). | DOI | MR

[29] V. Shenoy and L. Freund, A continuum description of the energetics and evolution of stepped surfaces in strained nanostructures. J. Mech. Phys. Solids 50 (2002) 1817–1841. | DOI | MR | Zbl

[30] L.-H. Tang, Flattening of grooves: From Step Dynamics to Continuum Theory, Dynamics of Crystal Surfaces and Interfaces. Springer, New York (1997).

[31] Y. Xiang, Derivation of a continuum model for epitaxial growth with elasticity on vicinal surface. SIAM J. Appl. Math. 63 (2002) 241–258. | DOI | MR | Zbl

[32] A. Zangwill, Physics at Surfaces. Cambridge University Press, New York (1988). | DOI

Cité par Sources :