Piecewise constant reconstruction of damaged color images
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 37.

A variational model for reconstruction of damaged color images is studied, in particular in the case where only finitely many colors are admissible for the reconstructed image. An existence result and regularity properties of minimizers are presented.

DOI : 10.1051/cocv/2018031
Classification : 49J99, 26B30, 68U10
Mots-clés : Energy minimization, RGB total variation models, colorization, inpainting, image restoration
Cristoferi, Riccardo 1 ; Fonseca, Irene 1

1
@article{COCV_2019__25__A37_0,
     author = {Cristoferi, Riccardo and Fonseca, Irene},
     title = {Piecewise constant reconstruction of damaged color images},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018031},
     zbl = {1437.49030},
     mrnumber = {4003466},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018031/}
}
TY  - JOUR
AU  - Cristoferi, Riccardo
AU  - Fonseca, Irene
TI  - Piecewise constant reconstruction of damaged color images
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018031/
DO  - 10.1051/cocv/2018031
LA  - en
ID  - COCV_2019__25__A37_0
ER  - 
%0 Journal Article
%A Cristoferi, Riccardo
%A Fonseca, Irene
%T Piecewise constant reconstruction of damaged color images
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018031/
%R 10.1051/cocv/2018031
%G en
%F COCV_2019__25__A37_0
Cristoferi, Riccardo; Fonseca, Irene. Piecewise constant reconstruction of damaged color images. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 37. doi : 10.1051/cocv/2018031. http://www.numdam.org/articles/10.1051/cocv/2018031/

[1] L. Ambrosio and A. Braides, Functionals defined on partitions in sets of finite perimeter. II. Semicontinuity, relaxation and homogenization. J. Math. Pures Appl. 69 (1990) 307–333. | MR | Zbl

[2] L. Ambrosio and S. Masnou, A direct variational approach to a problem arising in image reconstruction. Interfaces Free Bound. 5 (2003) 63–81. | DOI | MR | Zbl

[3] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000). | MR | Zbl

[4] C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro and J. Verdera, Filling-in by joint interpolation of vector fields and gray levels. IEEE Trans. Image Process. 10 (2001) 1200–1211. | DOI | MR | Zbl

[5] A. Bugeau, M. Bertalmío, V. Caselles and G. Sapiro, A comprehensive framework for image inpainting. IEEE Trans. Image Process. 19 (2010) 2634–2645. | DOI | MR | Zbl

[6] T.F. Chan and J. Shen, Inpainting based on nonlinear transport and diffusion, in Inverse problems, image analysis, and medical imaging (New Orleans, LA, 2001). Vol. 313 of Contemporary Mathematics American Mathematical Society. Providence, RI (2002) 53–65. | DOI | MR | Zbl

[7] T.F. Chan and J. Shen, Variational image inpainting. Commun. Pure Appl. Math. 58 (2005) 579–619. | DOI | MR | Zbl

[8] T.F. Chan, S.H. Kang and J. Shen, Euler’s elastica and curvature-based inpainting. SIAM J. Appl. Math. 63 (2002) 564–592. | MR | Zbl

[9] G. Congedo and I. Tamanini, On the existence of solutions to a problem in multidimensional segmentation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 8 (1991) 175–195. | DOI | Numdam | MR | Zbl

[10] E. De Giorgi, M. Carriero and A. Leaci, Existence theorem for a minimum problem with free discontinuity set. Arch. Rational Mech. Anal. 108 (1989) 195–218. | DOI | MR | Zbl

[11] R. Ferreira, I. Fonseca and M.L.S. Mascarenhas, A chromaticity-brightness model for color images denoising in a Meyer’s “u + v” framework. Calc. Var. Partial Differ. Equ. 56 (2017) Art. 140–53. | DOI | MR | Zbl

[12] I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: Lp Spaces. Springer Monographs in Mathematics. Springer, New York (2007). | MR | Zbl

[13] I. Fonseca, G. Leoni, F. Maggi and M. Morini, Exact reconstruction of damaged color images using a total variation model. Ann. Inst. Henri Poincaré Anal. Non Linéaire 27 (2010) 1291–1331. | DOI | Numdam | MR | Zbl

[14] M. Fornasier, Nonlinear projection recovery in digital inpainting for color image restoration. J. Math. Imaging Vision 24 (2006) 359–373. | DOI | MR | Zbl

[15] M. Fornasier and R. March, Restoration of color images by vector valued BV functions and variational calculus. SIAM J. Appl. Math. 68 (2007) 437–460. | DOI | MR | Zbl

[16] R. Irony, D. Cohen-Or and D. Lischinski, Colorization by example, in Proceedings of the Sixteenth Eurographics Conference on Rendering Techniques, EGSR ’05, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association (2005) 201–210.

[17] S.H. Kang and R. March, Variational models for image colorization via chromaticity and brightness decomposition. IEEE Trans. Image Process. 16 (2007) 2251–2261. | DOI | MR | Zbl

[18] G.P. Leonardi, Infiltrations in immiscible fluids systems. Proc. R. Soc. Edinb. Sect. A 131 (2001) 425–436. | DOI | MR | Zbl

[19] A. Levin, D. Lischinski and Y. Weiss, Colorization using optimization. ACM Trans. Graph. 23 (2004), 689–694. | DOI

[20] F. Maggi, An introduction to geometric measure theory, in Sets of Finite Perimeter and Geometric Variational Problems. Vol. 135 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2012). | MR | Zbl

[21] D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42 (1989) 577–685. | DOI | MR | Zbl

[22] L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms. Experimental mathematics: computational issues in nonlinear science (Los Alamos, NM, 1991). Physica D 60 (1992), 259–268. | MR | Zbl

[23] G. Sapiro, Inpainting the colors. IEEE Int. Conf. Image Process. 2005 2 (2005) II–698. | DOI

[24] G. Sapiro and L. Yatziv, Fast image and video colorization using chrominance blending. IEEE Trans. Image Process. 15 (2006) 1120–1129. | DOI

[25] D. Sýkora, J. Buriánek and J. Žára, Unsupervised colorization of black-and-white cartoons, in Proceedings of the 3rd International Symposium on Non-photorealistic Animation and Rendering, NPAR ’04, New York, NY, USA (2004) ACM, 121–127. | DOI

[26] I. Tamanini, Boundaries of Caccioppoli sets with Hölder-continuous normal vector. J. Reine Angew. Math. 334 (1982) 27–39. | MR | Zbl

[27] I. Tamanini and G. Congedo, Optimal segmentation of unbounded functions. Rend. Sem. Mat. Univ. Padova 95 (1996) 153–174. | Numdam | MR | Zbl

Cité par Sources :