A note on relaxation with constraints on the determinant
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 41.

We consider multiple integrals of the Calculus of Variations of the form E(u) = ∫ W(x, u(x), Du(x)) dx where W is a Carathéodory function finite on matrices satisfying an orientation preserving or an incompressibility constraint of the type, det Du > 0 or det Du = 1, respectively. Under suitable growth and lower semicontinuity assumptions in the u variable we prove that the functional ∫ W$$(x, u(x), Du(x)) dx is an upper bound for the relaxation of E and coincides with the relaxation if the quasiconvex envelope W$$ of W is polyconvex and satisfies p growth from below for p bigger then the ambient dimension. Our result generalises a previous one by Conti and Dolzmann [Arch. Rational Mech. Anal. 217 (2015) 413–437] relative to the case where W depends only on the gradient variable.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018030
Classification : 49J45, 74B20
Mots-clés : Calculus of variations, nonlinear elasticity
Cicalese, Marco 1 ; Fusco, Nicola 1

1
@article{COCV_2019__25__A41_0,
     author = {Cicalese, Marco and Fusco, Nicola},
     title = {A note on relaxation with constraints on the determinant},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018030},
     mrnumber = {4009552},
     zbl = {1437.49026},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018030/}
}
TY  - JOUR
AU  - Cicalese, Marco
AU  - Fusco, Nicola
TI  - A note on relaxation with constraints on the determinant
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018030/
DO  - 10.1051/cocv/2018030
LA  - en
ID  - COCV_2019__25__A41_0
ER  - 
%0 Journal Article
%A Cicalese, Marco
%A Fusco, Nicola
%T A note on relaxation with constraints on the determinant
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018030/
%R 10.1051/cocv/2018030
%G en
%F COCV_2019__25__A41_0
Cicalese, Marco; Fusco, Nicola. A note on relaxation with constraints on the determinant. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 41. doi : 10.1051/cocv/2018030. http://www.numdam.org/articles/10.1051/cocv/2018030/

[1] J.M. Ball, Global invertibility of Sobolev functions and the interpenetration of matter. Proc. R. Soc. Edinb. Sect. A 88 (1981) 315–328. | DOI | MR | Zbl

[2] S. Conti and G. Dolzmann, On the theory of relaxation in nonlinear elasticity with constraints on the determinant. Arch. Rational Mech. Anal. 217 (2015) 413–437. | DOI | MR | Zbl

[3] I. Ekeland and R. Témam, Convex Analysis and Variational Problems. In Vol. 28 of Classics in Applied Mathematics. SIAM (1999). | MR | Zbl

[4] E. Giusti, Direct Methods in the Calculus of Variations. World Scientific (2003). | DOI | MR | Zbl

[5] S. Müller, Higher integrability of determinants and weak convergence in L1. J. Reine Angew. Math. 412 (1990) 20–34. | MR | Zbl

Cité par Sources :