We consider multiple integrals of the Calculus of Variations of the form E(u) = ∫ W(x, u(x), Du(x)) dx where W is a Carathéodory function finite on matrices satisfying an orientation preserving or an incompressibility constraint of the type, det Du > 0 or det Du = 1, respectively. Under suitable growth and lower semicontinuity assumptions in the u variable we prove that the functional ∫ W$$(x, u(x), Du(x)) dx is an upper bound for the relaxation of E and coincides with the relaxation if the quasiconvex envelope W$$ of W is polyconvex and satisfies p growth from below for p bigger then the ambient dimension. Our result generalises a previous one by Conti and Dolzmann [Arch. Rational Mech. Anal. 217 (2015) 413–437] relative to the case where W depends only on the gradient variable.
Accepté le :
DOI : 10.1051/cocv/2018030
Mots-clés : Calculus of variations, nonlinear elasticity
@article{COCV_2019__25__A41_0, author = {Cicalese, Marco and Fusco, Nicola}, title = {A note on relaxation with constraints on the determinant}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {25}, year = {2019}, doi = {10.1051/cocv/2018030}, mrnumber = {4009552}, zbl = {1437.49026}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2018030/} }
TY - JOUR AU - Cicalese, Marco AU - Fusco, Nicola TI - A note on relaxation with constraints on the determinant JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2019 VL - 25 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2018030/ DO - 10.1051/cocv/2018030 LA - en ID - COCV_2019__25__A41_0 ER -
%0 Journal Article %A Cicalese, Marco %A Fusco, Nicola %T A note on relaxation with constraints on the determinant %J ESAIM: Control, Optimisation and Calculus of Variations %D 2019 %V 25 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2018030/ %R 10.1051/cocv/2018030 %G en %F COCV_2019__25__A41_0
Cicalese, Marco; Fusco, Nicola. A note on relaxation with constraints on the determinant. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 41. doi : 10.1051/cocv/2018030. http://www.numdam.org/articles/10.1051/cocv/2018030/
[1] Global invertibility of Sobolev functions and the interpenetration of matter. Proc. R. Soc. Edinb. Sect. A 88 (1981) 315–328. | DOI | MR | Zbl
,[2] On the theory of relaxation in nonlinear elasticity with constraints on the determinant. Arch. Rational Mech. Anal. 217 (2015) 413–437. | DOI | MR | Zbl
and ,[3] Convex Analysis and Variational Problems. In Vol. 28 of Classics in Applied Mathematics. SIAM (1999). | MR | Zbl
and ,[4] Direct Methods in the Calculus of Variations. World Scientific (2003). | DOI | MR | Zbl
,[5] Higher integrability of determinants and weak convergence in L1. J. Reine Angew. Math. 412 (1990) 20–34. | MR | Zbl
,Cité par Sources :