Optimal control of reaction-diffusion systems with hysteresis
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1453-1488.

This paper is concerned with the optimal control of hysteresis-reaction-diffusion systems. We study a control problem with two sorts of controls, namely distributed control functions, or controls which act on a part of the boundary of the domain. The state equation is given by a reaction-diffusion system with the additional challenge that the reaction term includes a scalar stop operator. We choose a variational inequality to represent the hysteresis. In this paper, we prove first order necessary optimality conditions. In particular, under certain regularity assumptions, we derive results about the continuity properties of the adjoint system. For the case of distributed controls, we improve the optimality conditions and show uniqueness of the adjoint variables. We employ the optimality system to prove higher regularity of the optimal solutions of our problem. The specific feature of rate-independent hysteresis in the state equation leads to difficulties concerning the analysis of the solution operator. Non-locality in time of the Hadamard derivative of the control-to-state operator complicates the derivation of an adjoint system. This work is motivated by its academic challenge, as well as by its possible potential for applications such as in economic modeling.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018025
Classification : 49J20, 47J40, 35K51
Mots-clés : Optimal control, reaction-diffusion, semilinear parabolic evolution problem, hysteresis operator, stop operator, global existence, solution operator, Hadamard differentiability, optimality conditions, adjoint system
Münch, Christian 1

1
@article{COCV_2018__24_4_1453_0,
     author = {M\"unch, Christian},
     title = {Optimal control of reaction-diffusion systems with hysteresis},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1453--1488},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {4},
     year = {2018},
     doi = {10.1051/cocv/2018025},
     zbl = {1414.49002},
     mrnumber = {3922446},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018025/}
}
TY  - JOUR
AU  - Münch, Christian
TI  - Optimal control of reaction-diffusion systems with hysteresis
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1453
EP  - 1488
VL  - 24
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018025/
DO  - 10.1051/cocv/2018025
LA  - en
ID  - COCV_2018__24_4_1453_0
ER  - 
%0 Journal Article
%A Münch, Christian
%T Optimal control of reaction-diffusion systems with hysteresis
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1453-1488
%V 24
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018025/
%R 10.1051/cocv/2018025
%G en
%F COCV_2018__24_4_1453_0
Münch, Christian. Optimal control of reaction-diffusion systems with hysteresis. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1453-1488. doi : 10.1051/cocv/2018025. http://www.numdam.org/articles/10.1051/cocv/2018025/

[1] H. Amann, Nonautonomous parabolic equations involving measures. J. Math. Sci. 130 (2005) 4780–4802. | DOI | MR | Zbl

[2] M. Arnold, N. Begun, P. Gurevich, E. Kwame, H. Lamba and D. Rachinskii, Dynamics of discrete time systems with a hysteresis stop operator. SIAM J. Appl. Dyn. Syst. 16 (2017) 91–119. | DOI | MR | Zbl

[3] P. Auscher, N. Badr, R. Haller-Dintelmann and J. Rehberg, The square root problem for second-order, divergence form operators with mixed boundary conditions on Lp. J. Evol. Equ. 15 (2014) 165–208. | DOI | MR | Zbl

[4] W. Barthel, C. John and F. Tröltzsch, Optimal boundary control of a system of reaction diffusion equations. ZAMM – J. Appl. Math. Mech./Z. Angew. Math. Mech. 90 (2010) 966–982. | DOI | MR | Zbl

[5] J.F. Bonnans and E. Casas, On the choice of the function spaces for some state-constrained control problems. Numer. Funct. Anal. Optim. 7 (1985) 333–348. | DOI | MR | Zbl

[6] M. Brokate, Optimale Steuerung von gewöhnlichen Differentialgleichungen mit Nichtlinearitäten vom Hysteresis-Typ. Methoden und Verfahren der mathematischen Physik. P. Lang (1987). | MR | Zbl

[7] M. Brokate, Optimal control of ode systems with hysteresis nonlinearities, in Trends in Mathematical Optimization. Springer (1988) 25–41. | DOI | MR | Zbl

[8] M. Brokate, Optimal control of systems described by ordinary differential equations with nonlinear characteristics of the hysteresis type. Autom. Remote Control 52 (1991) 1639–1681. | MR | Zbl

[9] M. Brokate and P. Krejčì, Optimal control of ode systems involving a rate independent variational inequality. Discrete Contin. Dynam. Syst. 18 (2013) 331–348. | DOI | MR | Zbl

[10] M. Brokate and P. Krejčì, Weak differentiability of scalar hysteresis operators. Discrete Contin. Dynam. Syst. 35 (2015) 2405–2421. | DOI | MR | Zbl

[11] C.M. Carracedo and M. Sanz Alix The Theory of Fractional Powers of Operators. North-Holland Mathematics Studies. Elsevier (2001). | MR | Zbl

[12] E. Casas, Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 (1997) 1297–1327. | DOI | MR | Zbl

[13] C. Castaing, M. Monteiro Marques and P.R. De Fitte, Some problems in optimal control governed by the sweeping process. J. Nonlinear Convex Anal. 15 (2014) 1043–1070. | MR | Zbl

[14] C. Cavaterra and F. Colombo, Automatic control problems for reaction-diffusion systems. J. Evol. Equ. 2 (2002) 241–273. | DOI | MR | Zbl

[15] G. Colombo, R. Henrion, N.D. Hoang and B.S. Mordukhovich, Optimal control of the sweeping process. Dyn. Contin. Discrete Impuls. Syst. Ser. B: Appl. Algorithms 19 (2012) 117–159. | MR | Zbl

[16] K. Disser, A.F.M. Ter Elst and J. Rehberg, Hölder Estimates for Parabolic Operators on Domains With Rough Boundary. Preprint (2015). | arXiv | MR

[17] G. Dudziuk and M. Niezgódka, Closed-loop control of a reaction-diffusion system. Adv. Math. Sci. Appl. 21 (2011) 383–402. | MR | Zbl

[18] M. Eleuteri and L. Lussardi, Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evol. Equ. Control Theory 3 (2014) 411–427. | DOI | MR | Zbl

[19] M. Eleuteri, L. Lussardi and U. Stefanelli, Thermal control of the Souza-Auricchio model for shape memory alloys. Discrete Cont. Dynam. Syst. Ser. S 6 (2013) 369–386. | MR | Zbl

[20] C. Giovanni, R. Henrion, D. Hoang Nguyen and B.S. Mordukhovich, Optimal control of the sweeping process over polyhedral controlled sets. J. Differ. Equ. 260 (2016) 3397–3447. | DOI | MR | Zbl

[21] J.A. Griepentrog, K. Groeger, H.C. Kaiser and J. Rehberg, Interpolation for function spaces related to mixed boundary value problems. Math. Nachr. 241 (2002) 110–120. | DOI | MR | Zbl

[22] R. Griesse, Parametric Sensitivity Analysis for Control-Constrained Optimal Control Problems Governed by Systems of Parabolic Partial Differential Equations. Ph.D. thesis, Universität Bayreuth, Fakultät für Mathematik und Physik (2003).

[23] R. Griesse and S. Volkwein, Parametric sensitivity analysis for optimal boundary control of a 3D reaction-diffusion system, in Large-scale Nonlinear Optimization. Springer (2006) 127–149. | DOI | MR | Zbl

[24] R. Haller-Dintelmann, A. Jonsson, D. Knees and J. Rehberg, Elliptic and parabolic regularity for second-order divergence operators with mixed boundary conditions. Math. Methods Appl. Sci. 39 (2016) 5007–5026. | DOI | MR | Zbl

[25] D. Henry, Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics. Springer (1981). | DOI | MR | Zbl

[26] R. Herzog, C. Meyer and G. Wachsmuth, C-stationarity for optimal control of static plasticity with linear kinematic hardening. SIAM J. Control Optim. 50 (2012) 3052–3082. | DOI | MR | Zbl

[27] R. Herzog, C. Meyer and G. Wachsmuth, B- and strong stationarity for optimal control of static plasticity with hardening. SIAM J. Optim. 23 (2013) 321–352. | DOI | MR | Zbl

[28] R. Herzog, C. Meyer and G. Wachsmuth, Optimal Control of Elastoplastic Processes: Analysis, Algorithms, Numerical Analysis and Applications. Springer International Publishing (2014) 27–41. | MR

[29] R. Herzog, C. Meyer and A. Stötzner, Existence of solutions of a thermoviscoplastic model and associated optimal control problems. Nonlinear Anal.: Real World Appl. 35 (2017) 75–101. | DOI | MR | Zbl

[30] D. Hömberg, K. Krumbiegel and J. Rehberg, Optimal control of a parabolic equation with dynamic boundary condition. Appl. Math. Optim. 67 (2013) 3–31. | DOI | MR | Zbl

[31] C. Meyer and L. Susu, Optimal control of nonsmooth, semilinear parabolic equations. SIAM J. Control Optim. 55 (2017) 2206–2234. | DOI | MR | Zbl

[32] C. Münch, Global existence and Hadamard differentiability of hysteresis reaction–diffusion systems. J. Evol. Equ. (2017). | MR

[33] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences. Springer (1983). | MR | Zbl

[34] J.P. Raymond and H. Zidani, Pontryagin’s principle for state-constrained control problems governed by parabolic equations with unbounded controls. SIAM J. Control Optim. 36 (1998) 1853–1879. | DOI | MR | Zbl

[35] F. Rindler, Optimal control for nonconvex rate-independent evolution processes. SIAM J. Control Optim. 47 (2008) 2773–2794. | DOI | MR | Zbl

[36] F. Rindler, Approximation of rate-independent optimal control problems. SIAM J. Numer. Anal. 47 (2009) 3884–3909. | DOI | MR | Zbl

[37] A.F.M. Ter Elst and J. Rehberg, L∞-estimates for divergence operators on bad domains. Anal. Appl. 10 (2012) 207–214. | DOI | MR | Zbl

[38] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods, and Applications. Graduate Studies in Mathematics. American Mathematical Society (2010). | DOI | MR | Zbl

[39] S. Ulisse, D. Wachsmuth and G. Wachsmuth, Optimal control of a rate-independent evolution equation via viscous regularization. Discrete Contin. Dyn. Syst. S 10 (2017) 1467–1485. | DOI | MR | Zbl

[40] A. Visintin, Differential Models of Hysteresis, Vol. 111. Springer Science & Business Media (2013). | Zbl

[41] G. Wachsmuth, Optimal control of quasi-static plasticity with linear kinematic hardening, part I: Existence and discretization in time. SIAM J. Control Optim. 50 (2012) 2836–2861. | DOI | MR | Zbl

[42] G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening II: Regularization and differentiability. Z. Anal. Anwend. 34 (2015) 391–418. | DOI | MR | Zbl

[43] G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening III: Optimality conditions. Z. Anal. Anwend. 35 (2016) 81–118. | DOI | MR | Zbl

Cité par Sources :