An epiperimetric inequality for the lower dimensional obstacle problem
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 39.

In this paper we give a proof of an epiperimetric inequality in the setting of the lower dimensional obstacle problem. The inequality was introduced by Weiss [Invent. Math. 138 (1999) 23–50) for the classical obstacle problem and has striking consequences concerning the regularity of the free-boundary. Our proof follows the approach of Focardi and Spadaro [Adv. Differ. Equ. 21 (2015) 153–200] which uses an homogeneity approach and a Γ-convergence analysis.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018024
Classification : 35R35
Mots-clés : Epiperimetric inequality, lower dimensional obstacle problem, free-boundary, Γ-convergence
Geraci, Francesco 1

1
@article{COCV_2019__25__A39_0,
     author = {Geraci, Francesco},
     title = {An epiperimetric inequality for the lower dimensional obstacle problem},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018024},
     mrnumber = {4009551},
     zbl = {1442.35558},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018024/}
}
TY  - JOUR
AU  - Geraci, Francesco
TI  - An epiperimetric inequality for the lower dimensional obstacle problem
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018024/
DO  - 10.1051/cocv/2018024
LA  - en
ID  - COCV_2019__25__A39_0
ER  - 
%0 Journal Article
%A Geraci, Francesco
%T An epiperimetric inequality for the lower dimensional obstacle problem
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018024/
%R 10.1051/cocv/2018024
%G en
%F COCV_2019__25__A39_0
Geraci, Francesco. An epiperimetric inequality for the lower dimensional obstacle problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 39. doi : 10.1051/cocv/2018024. http://www.numdam.org/articles/10.1051/cocv/2018024/

[1] H.W. Alt, L.A. Caffarelli and A. Friedman, Variational problems with two phases and their free boundaries. Trans. Am. Math. Soc. 282 (1984) 431–461. | DOI | MR | Zbl

[2] I. Athanasopoulos and L.A. Caffarelli, Optimal regularity of lower dimensional obstacle problems. J. Math. Sci. 132 (2006) 274–284. | DOI | MR | Zbl

[3] I. Athanasopoulos, L.A. Caffarelli and S. Salsa, The structure of the free boundary for lower dimensional obstacle problems. Am. J. Math. 130 (2008) 485–498. | DOI | MR | Zbl

[4] J.P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195 (1990) 127–293. | DOI | MR

[5] H.R. Brezis, Analisi funzionale, edited by Liguori, Napoli (1986) xv+419.

[6] L.A. Caffarelli, The regularity of free boundaries in higher dimensions. Acta Math. 139 (1977) 155–184. | DOI | MR | Zbl

[7] L.A. Caffarelli, Compactness methods in free boundary problems. Comm. Partial Differ. Equ. 5 (1980) 427–448. | DOI | MR | Zbl

[8] L.A. Caffarelli, The obstacle problem revisited. Lezioni Fermiane. [Fermi Lectures] Accademia Nazionale dei Lincei, Rome; Scuola Normale Superiore, Pisa (1998) ii+54. | MR | Zbl

[9] L.A. Caffarelli, The obstacle problem revisited. J. Fourier Anal. Appl. 4 (1998) 383–402. | DOI | MR | Zbl

[10] L.A. Caffarelli and A. Figalli, Regularity of solutions to the parabolic fractional obstacle problem. J. Reine Angew. Math. 680 (2013) 191–233. | MR | Zbl

[11] L.A. Caffarelli and D. Kinderlehrer, Potential methods in variational inequalities. J. Anal. Math. 37 (1980) 285–295. | DOI | MR | Zbl

[12] L. Caffarelli and S. Salsa, A Geometric Approach to Free Boundary Problems. Vol. 68 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2005) x+270. | MR | Zbl

[13] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32 (2007) 1245–1260. | DOI | MR | Zbl

[14] L.A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171 (2010) 1903–1930. | DOI | MR | Zbl

[15] L.A. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171 (2008) 425–461. | DOI | MR | Zbl

[16] R. Cont and P. Tankov, Financial modelling with jump processes. Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL (2004) xvi+535. | MR | Zbl

[17] G. Dal Maso, An Introduction to Γ-Convergence. Vol. 8 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA, (1993) xiv+340. | MR | Zbl

[18] G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics. Translated from the French by C. W. John. Vol. 219 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin-New York (1976) xvi+397. | MR | Zbl

[19] E.B. Fabes, C.E. Kenig and R.P. Serapioni, The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equ. 7 (1982) 77–116. | DOI | MR | Zbl

[20] M. Focardi, Homogenization of random fractional obstacle problems via Γ-convergence. Commun. Partial Differ. Equ. 34 (2009) 1607–1631. | DOI | MR | Zbl

[21] M. Focardi, Aperiodic fractional obstacle problems. Adv. Math. 225 (2010) 3502–3544. | DOI | MR | Zbl

[22] M. Focardi, Vector-valued obstacle problems for non-local energies. Discret. Contin. Dyn. Syst. Ser. B 17 (2012) 487–507. | MR | Zbl

[23] M. Focardi and E. Spadaro, An epiperimetric inequality for the thin obstacle problem. Adv. Differ. Equ. 21 (2015) 153–200. | MR | Zbl

[24] M. Focardi and E. Spadaro, On the measure and the structure of the free boundary of the lower dimensional obstacleproblem. Arch. Rational. Mech. Anal. 230 (2018) 125–184. | DOI | MR | Zbl

[24A] M. Focardi and E. Spadaro, Correction to: On the measure and the structure of the free boundary of the lower dimensional obstacle problem. Arch. Rational. Mech. Anal. 230 (2018) 783–784. | DOI | MR | Zbl

[25] M. Focardi, M.S. Gelli and E. Spadaro, Monotonicity formulas for obstacle problems with Lipschitz coefficients. Calc. Var. Partial Differ. Equ. 54 (2015) 1547–1573. | DOI | MR | Zbl

[26] M. Focardi, F. Geraci and E. Spadaro, The classical obstacle problem for nonlinear variational energies. Nonlinear Anal. 154 (2017) 71–87. | DOI | MR | Zbl

[27] A. Friedman, Variational principles and free-boundary problems, edited by E. Robert. Second edition Krieger Publishing Co., Inc., Malabar, FL (1988) x+710. | MR

[28] N. Garofalo and A. Petrosyan, Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem. Invent. Math. 177 (2009) 415–461. | DOI | MR | Zbl

[29] N. Garofalo and X. Ros-Oton Structure and regularity of the singular set in the obstacle problem for the fractional Laplacian. Preprint (2017). | arXiv | MR

[30] N. Garofalo and M. Smit Vega Garcia, New monotonicity formulas and the optimal regularity in the Signorini problem with variable coefficients. Adv. Math. 262 (2014) 682–750. | DOI | MR | Zbl

[31] N. Garofalo, A. Petrosyan and M. Smit Vega Garcia, An epiperimetric inequality approach to the regularity of the free boundary in the Signorini problem with variable coefficients. J. Math. Pures Appl. 105 (2016) 745–787. | DOI | MR | Zbl

[32] N. Garofalo, A. Petrosyan, C.A. Pop and M. Smit Vega Garcia, Regularity of the free boundary for the obstacle problem for the fractional Laplacian with drift. Ann. Inst. Henri Poincaré Anal. Non Linéaire 34 (2017) 533–570. | DOI | Numdam | MR | Zbl

[33] F. Geraci, The classical obstacle problem with coefficients in fractional Sobolev spaces. Ann. Mat. Pura Appl. 197 (2018) 549–581. | DOI | MR | Zbl

[34] F. Geraci, The Classical Obstacle Problem for nonlinear variational energies and related problems. Ph.D. thesis (2017).

[35] M. Giaquinta and G. Modica, Regolarità Lipschitziana per la soluzione di alcuni problemi di minimo con vincolo. (Italian) Ann. Mat. Pura Appl. 106 (1975) 95–117. | DOI | MR | Zbl

[36] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin (2001) xiv+517. | MR | Zbl

[37] E. Giusti, Direct Methods in the Calculus of Variations. World Scientific Publishing Co., Inc., River Edge, NJ (2003) viii+403. | MR | Zbl

[38] P. Hajlasz and P. Koskela, Sobolev met Poincaré. Mem. Amer. Math. Soc. 145 (2000) x+101. | MR | Zbl

[39] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear potential theory of degenerate elliptic equations. Oxford Mathematical Monographs. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1993) vi+363. | MR | Zbl

[40] D. Kinderlehrer and L. Nirenberg, Regularity in free boundary problems. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (1977) 373–391. | Numdam | MR | Zbl

[41] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications. Vol. 88 of Pure and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London (1980) xiv+313. | MR | Zbl

[42] A. Kufner, Weighted Sobolev Spaces. Vol. 31 of Teubner-Texte zur Mathematik [Teubner Texts in Mathematics]. BSB B. G. Teubner Verlagsgesellschaft, Leipzig (1980) 151. | MR | Zbl

[43] J.H. Michael and W.P. Ziemer, Interior regularity for solutions to obstacle problems. Nonlinear Anal. 10 (1986) 1427–1448. | DOI | MR | Zbl

[44] A. Petrosyan and C.A. Pop, Optimal regularity of solutions to the obstacle problem for the fractional Laplacian with drift. (English summary) J. Funct. Anal. 268 (2015) 417–472. | DOI | MR | Zbl

[45] A. Petrosyan and H. Shahgholian, N. Uraltseva, Regularity of Free Boundaries in Obstacle-Type Problems. Vol. 136 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2012) x+221. | MR | Zbl

[46] J.-F. Rodrigues, Obstacle Problems in Mathematical Physics. Vol. 134 North-Holland Mathematics Studies. Notas de Matemática [Mathematical Notes] North-Holland Publishing Co., Amsterdam (1987) 114 xvi+352. | MR | Zbl

[47] A. Rüland and W. Shi, Optimal regularity for the thin obstacle problem with C0,α coefficients. Calc. Var. Partial Differ. Equ. 56 (2017) 41. | DOI | MR

[48] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60 (2007) 67–112. | DOI | MR | Zbl

[49] G.S. Weiss, A homogeneity improvement approach to the obstacle problem. Invent. Math. 138 (1999) 23–50. | DOI | MR | Zbl

Cité par Sources :