The weighted energy-dissipation principle and evolutionary Γ-convergence for doubly nonlinear problems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 36.

We consider a family of doubly nonlinear evolution equations that is given by families of convex dissipation potentials, nonconvex energy functionals, and external forces parametrized by a small parameter ε. For each of these problems, we introduce the so-called weighted energy-dissipation (WED) functional, whose minimizers correspond to solutions of an elliptic-in-time regularization of the target problems with regularization parameter δ. We investigate the relation between the Γ-convergence of the WED functionals and evolutionary Γ-convergence of the associated systems. More precisely, we deal with the limits δ → 0, ε → 0, as well as δ + ε → 0 either in the sense of Γ-convergence of functionals or in the sense of evolutionary Γ-convergence of functional-driven evolution problems, or both. Additionally, we provide some quantitative estimates on the rate of convergence for the limit ε → 0, in the case of quadratic dissipation potentials and uniformly λ-convex energy functionals. Finally, we discuss a homogenization and a dimension reduction problem as examples of application.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018023
Classification : 58E30, 35K55, 47J35
Mots-clés : Doubly nonlinear evolution, weighted-energy-dissipation principle, evolutionary Γ-convergence, variational principle, homogenization, dimension reduction
Liero, Matthias 1 ; Melchionna, Stefano 1

1
@article{COCV_2019__25__A36_0,
     author = {Liero, Matthias and Melchionna, Stefano},
     title = {The weighted energy-dissipation principle and evolutionary {\ensuremath{\Gamma}-convergence} for doubly nonlinear problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018023},
     zbl = {1437.58015},
     mrnumber = {4003464},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018023/}
}
TY  - JOUR
AU  - Liero, Matthias
AU  - Melchionna, Stefano
TI  - The weighted energy-dissipation principle and evolutionary Γ-convergence for doubly nonlinear problems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018023/
DO  - 10.1051/cocv/2018023
LA  - en
ID  - COCV_2019__25__A36_0
ER  - 
%0 Journal Article
%A Liero, Matthias
%A Melchionna, Stefano
%T The weighted energy-dissipation principle and evolutionary Γ-convergence for doubly nonlinear problems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018023/
%R 10.1051/cocv/2018023
%G en
%F COCV_2019__25__A36_0
Liero, Matthias; Melchionna, Stefano. The weighted energy-dissipation principle and evolutionary Γ-convergence for doubly nonlinear problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 36. doi : 10.1051/cocv/2018023. http://www.numdam.org/articles/10.1051/cocv/2018023/

[1] G. Akagi and S. Melchionna, Elliptic-regularization of nonpotential perturbations of doubly-nonlinear flows of nonconvex energies: a variational approach. J. Convex Anal. 25 (2018) 861–898. | MR | Zbl

[2] G. Akagi and U. Stefanelli, A variational principle for doubly nonlinear evolution. Appl. Math. Lett. 23 (2010) 1120–1124. | DOI | MR | Zbl

[3] G. Akagi and U. Stefanelli, Weighted energy-dissipation functionals for doubly-nonlinear evolution. J. Funct. Anal. 260 (2011) 2541–2578. | DOI | MR | Zbl

[4] G. Akagi and U. Stefanelli, Doubly nonlinear equations as convex minimization. SIAM J. Math. Anal. 46 (2014) 1922–1945. | DOI | MR | Zbl

[5] G. Akagi and U. Stefanelli, A variational principle for gradient flows of nonconvex energies. J. Convex Anal. 23 (2016) 53–75. | MR | Zbl

[6] H. Attouch, Variational Convergence for Functions and Operators. Pitman, Boston (1968).

[7] S. Aizicovici and Q. Yan, Convergence theorems for abstract doubly nonlinear differential equations. Panamer. Math. J. 7 (1997) 1–17. | MR | Zbl

[8] Andrea Braides, A handbook of Γ-convergence, in Vol. 3 of Handbook of Differential Equations: Stationary Partial Differential Equations, edited by M. Chipot and P. Quittner. North-Holland (2006) 101–213. | Zbl

[9] P. Colli, On some doubly nonlinear evolution equations in Banach spaces. Jpn J. Ind. Appl. Math. 9 (1992) 181–203. | DOI | MR | Zbl

[10] P. Colli and A. Visintin, On a class of doubly nonlinear evolution equations. Commun. Partial Differ. Equ. 15 (1990) 737–756. | DOI | MR | Zbl

[11] T. Ilmanen. Elliptic regularization and partial regularity for motion by mean curvature. Memoirs of the American Mathematical Society (1994) 108:520x:+90 | MR | Zbl

[12] H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74 (1995) 549–578. | MR | Zbl

[13] M. Liero and U. Stefanelli, A new minimum principle for Lagrangian mechanics. J. Nonlinear Sci. 23 (2013) 179–204. | DOI | MR | Zbl

[14] M. Liero and U. Stefanelli, Weighted inertia-dissipation-energy functionals for semilinear equations. Boll. Unione Mat. Ital. 6 (2013) 1–27. | MR | Zbl

[15] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Travaux et Recherches Mathématiques. Dunod, Paris (1968). | MR | Zbl

[16] S. Melchionna, A variational principle for nonpotential perturbations of gradient flows of nonconvex energies. J. Differ. Equ. 262 (2017) 3737–3758. | DOI | MR | Zbl

[17] A. Mielke, On evolutionary Γ-convergence for gradient systems. Lecture Notes in Applied Mathematics and Mechanics (2016) 187–249. | DOI | MR

[18] A. Mielke and M. Ortiz, A class of minimum principle for characterizing the trajectories of dissipative systems. ESAIM: COCV 14 (2008) 494–516. | Numdam | MR | Zbl

[19] A. Mielke and U. Stefanelli, Weighted energy-dissipation functionals for gradient flows. ESAIM: COCV 17 (2011) 52–85. | Numdam | MR | Zbl

[20] A. K. Nandakumaran and A. Visintin, Variational approach to homogenization of doubly-nonlinear flow in a periodic structure. Nonlinear Analysis Series A 120 (2015) 14–29. | DOI | MR | Zbl

[21] M. Ôtani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems. J. Differ. Equ. 46 (1982) 268–299. | DOI | MR | Zbl

[22] W. Rudin, Real and Complex Analysis, 3rd edn. McGraw Hill, New York (1987) | MR | Zbl

[23] E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau. Comm. Pure Appl. Math. LVII (2004) 1627–1672 | DOI | MR | Zbl

[24] E. Serra and P. Tilli, Nonlinear wave equations as limit of convex minimization problems: proof of a conjecture by De Giorgi. Ann. Math. 175 (2012) 1511–1574. | DOI | MR | Zbl

[25] U. Stefanelli, The Brezis-Ekeland principle for doubly nonlinear equations. SIAM J. Control Optim. 47 (2008) 1615–1642. | DOI | MR | Zbl

[26] U. Stefanelli, The De Giorgi conjecture on elliptic regularization. Math. Models Methods Appl. Sci. 21 (2011) 1377–1394. | DOI | MR | Zbl

[27] A. Visintin, Evolutionary Γ-Convergence of Weak Type. Preprint (2017). | arXiv

Cité par Sources :