Stability results of some first order viscous hyperbolic systems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 33.

In this paper, we first introduce an abstract viscous hyperbolic problem for which we prove exponential decay under appropriated assumptions. We then give some illustrative examples, like the linearized viscous Saint-Venant system. In order to achieve the optimal decay rate, we also perform a detailed spectral analysis of our abstract problem under a natural assumption satisfied by various examples. We finally consider the boundary stabilizability of the linearized viscous Saint-Venant system on trees.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018020
Classification : 35L50, 93D15, 35B37
Mots-clés : Hyperbolic systems, viscosity, stabilization
Nicaise, Serge 1

1
@article{COCV_2019__25__A33_0,
     author = {Nicaise, Serge},
     title = {Stability results of some first order viscous hyperbolic systems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018020},
     zbl = {1441.35055},
     mrnumber = {4001033},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018020/}
}
TY  - JOUR
AU  - Nicaise, Serge
TI  - Stability results of some first order viscous hyperbolic systems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018020/
DO  - 10.1051/cocv/2018020
LA  - en
ID  - COCV_2019__25__A33_0
ER  - 
%0 Journal Article
%A Nicaise, Serge
%T Stability results of some first order viscous hyperbolic systems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018020/
%R 10.1051/cocv/2018020
%G en
%F COCV_2019__25__A33_0
Nicaise, Serge. Stability results of some first order viscous hyperbolic systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 33. doi : 10.1051/cocv/2018020. http://www.numdam.org/articles/10.1051/cocv/2018020/

[1] F. Ali Mehmeti, A characterisation of generalized c notion on nets. Integr. Equ. Oper. Theory 9 (1986) 753–766. | DOI | MR | Zbl

[2] F. Ali Mehmeti, Nonlinear Wave in Networks. Vol. 80 of Math. Res. Akademie Verlag (1994). | MR | Zbl

[3] K. Ammari and S. Nicaise, Stabilization of Elastic Systems by Collocated Feedback. Vol. 2124 of Lecture Notes in Mathematics. Springer, Cham (2015). | DOI | MR | Zbl

[4] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21 (1998) 823–864. | DOI | MR | Zbl

[5] H. Arfaoui, F. Ben Belgacem, H. El Fekih and J.-P. Raymond, Boundary stabilizability of the linearized viscous Saint-Venant system. Discrete Contin. Dyn. Syst. Ser. B 15 (2011) 491–511. | MR | Zbl

[6] G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems. PNLDE Subseries in Control. Birkhäuser, Basel (2016). | DOI | MR

[7] G. Bastin, J.-M. Coron and B. D’Andréa Novel, On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Netw. Heterog. Media 4 (2009) 177–187. | DOI | MR | Zbl

[8] J. Von Below, A characteristic equation associated to an eigenvalue problem on c2-networks. Linear Algebra Appl. 71 (1985) 309–325. | DOI | MR | Zbl

[9] J. Von Below, Classical solvability of linear parabolic equations on networks. J. Differ. Equ. 72 (1988) 316–337. | DOI | MR | Zbl

[10] J. Von Below, Sturm-Liouville eigenvalue problems on networks. Math. Methods Appl. Sci. 10 (1988) 383–395. | DOI | MR | Zbl

[11] G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs. Vol. 186 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2013). | MR | Zbl

[12] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011). | DOI | MR | Zbl

[13] S. Chowdhury, M. Ramaswamy and J.-P. Raymond, Controllability and stabilizability of the linearized compressible Navier-Stokes system in one dimension. SIAM J. Control Optim. 50 (2012) 2959–2987. | DOI | MR | Zbl

[14] J.-M. Coron, Control and Nonlinearity. Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007). | MR | Zbl

[15] S. Cox and E. Zuazua, The rate at which energy decays in a damped string. Commun. Partial Differ. Equ. 19 (1994) 213–243. | DOI | MR | Zbl

[16] R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-Structures. Vol. 50 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer-Verlag, Berlin (2006). | DOI | MR | Zbl

[17] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. In Vol. 3 of Spectral theory and applications, With the collaboration of Michel Artola and Michel Cessenat, Translated from the French by John C. Amson. Springer-Verlag, Berlin (1990). | MR | Zbl

[18] C. De Coster and S. Nicaise, Introduction à quelques problèmes d’EDP. Notes du groupe de travail de l’équipe EDP du Laboratoire de Mathématiques et leurs Applications de Valenciennes. Editions universitaires européennes (2014).

[19] J. De Halleux, C. Prieur, J.-M. Coron, B. D’Andréa Novel and G. Bastin, Boundary feedback control in networks of open channels. Autom. J. IFAC 39 (2003) 1365–1376. | DOI | MR | Zbl

[20] J.-M. Dominguez, Etude des équations de la magnéto-hydrodynamique stationnaire et de leur approximation par éléments finis. Thèse de 3eme cycle, Université Pierre et Marie Curie (1982).

[21] D. Dutykh and F. Dias, Viscous potential free-surface flows in a fluid layer of finite depth. C. R. Math. Acad. Sci. Paris 345 (2007) 113–118. | DOI | MR | Zbl

[22] G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique. Travaux et Recherches Mathématiques, No. 21, Dunod, Paris (1972). | MR | Zbl

[23] S. Evje and K.H. Karlsen, Global existence of weak solutions for a viscous two-phase model. J. Differ. Equ. 245 (2008) 2660–2703. | DOI | MR | Zbl

[24] C. Foiaş and R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5 (1978) 28–63. | Numdam | MR | Zbl

[25] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Vol. 5 of Springer Series in Computational Mathematics. Springer, Berlin (1986). | DOI | MR | Zbl

[26] D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ. Math. J. 44 (1995) 603–676. | DOI | MR | Zbl

[27] F.L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces. Ann. Differ. Equ. 1 (1985) 43–56. | MR | Zbl

[28] V. Komornik, Boundary stabilization, observation and control of Maxwell’s equations. PanAm. Math. J. 4 (1994) 47–61. | MR | Zbl

[29] J.E. Lagnese, G. Leugering and E. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures. Birkhäuser, Boston (1994). | DOI | MR | Zbl

[30] H.V.J. Le Meur, Derivation of a viscous Boussinesq system for surface water waves. Asymptot. Anal. 94 (2015) 309–345. | MR | Zbl

[31] G. Leugering and E.J.P.G. Schmidt, On the modelling and stabilization of flows in networks of open canals. SIAM J. Control Optim. 41 (2002) 164–180. | DOI | MR | Zbl

[32] G. Lumer, Connecting of local operators and evolution equations on networks, in Potential Theory, Copenhagen 1979 (Proc. Colloq., Copenhagen, 1979). Vol. 787 of Lecture Notes in Math. Springer, Berlin (1980) 219–234. | DOI | MR | Zbl

[33] P. Monk, Finite element methods for Maxwell’s equations. Numerical Analysis and Scientific Computation Series Oxford Univ. Press, New York (2003). | MR | Zbl

[34] P.B. Mucha and W.M. Zajaczkowski, On a Lp-estimate for the linearized compressible Navier-Stokes equations with the Dirichlet boundary conditions. J. Differ. Equ. 186 (2002) 377–393. | DOI | MR | Zbl

[35] S. Nicaise, Spectre des réseaux topologiques finis. Bull. Sc. Math., 2ème série 111 (1987) 401–413. | MR | Zbl

[36] S. Nicaise, Exact boundary controllability of Maxwell’s equations in heterogeneous media and an application to an inverse source problem. SIAM J. Control Optim. 38 (2000) 1145–1170. | DOI | MR | Zbl

[37] V. Perrollaz and L. Rosier, Finite-time stabilization of 2 × 2 hyperbolic systems on tree-shaped networks. SIAM J. Control Optim. 52 (2014) 143–163. | DOI | MR | Zbl

[38] K.D. Phung, Contrôle et stabilisation d’ondes électromagnétiques. ESAIM: COCV 5 (2000) 87–137. | Numdam | MR | Zbl

[39] C. Pignotti, Observability and controllability of Maxwell’s equations. Rend. Mat. Appl. 19 (1999) 523–546. | MR | Zbl

[40] J. Prüss, On the spectrum of C0-semigroups. Trans. Amer. Math. Soc. 284 (1984) 847–857. | MR | Zbl

[41] G. Ströhmer, About the resolvent of an operator from fluid dynamics. Math. Z. 194 (1987) 183–191. | DOI | MR | Zbl

Cité par Sources :