In this paper, we first introduce an abstract viscous hyperbolic problem for which we prove exponential decay under appropriated assumptions. We then give some illustrative examples, like the linearized viscous Saint-Venant system. In order to achieve the optimal decay rate, we also perform a detailed spectral analysis of our abstract problem under a natural assumption satisfied by various examples. We finally consider the boundary stabilizability of the linearized viscous Saint-Venant system on trees.
Accepté le :
DOI : 10.1051/cocv/2018020
Mots-clés : Hyperbolic systems, viscosity, stabilization
@article{COCV_2019__25__A33_0, author = {Nicaise, Serge}, title = {Stability results of some first order viscous hyperbolic systems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {25}, year = {2019}, doi = {10.1051/cocv/2018020}, zbl = {1441.35055}, mrnumber = {4001033}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2018020/} }
TY - JOUR AU - Nicaise, Serge TI - Stability results of some first order viscous hyperbolic systems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2019 VL - 25 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2018020/ DO - 10.1051/cocv/2018020 LA - en ID - COCV_2019__25__A33_0 ER -
%0 Journal Article %A Nicaise, Serge %T Stability results of some first order viscous hyperbolic systems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2019 %V 25 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2018020/ %R 10.1051/cocv/2018020 %G en %F COCV_2019__25__A33_0
Nicaise, Serge. Stability results of some first order viscous hyperbolic systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 33. doi : 10.1051/cocv/2018020. http://www.numdam.org/articles/10.1051/cocv/2018020/
[1] A characterisation of generalized c∞ notion on nets. Integr. Equ. Oper. Theory 9 (1986) 753–766. | DOI | MR | Zbl
,[2] Nonlinear Wave in Networks. Vol. 80 of Math. Res. Akademie Verlag (1994). | MR | Zbl
,[3] Stabilization of Elastic Systems by Collocated Feedback. Vol. 2124 of Lecture Notes in Mathematics. Springer, Cham (2015). | DOI | MR | Zbl
and ,[4] Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21 (1998) 823–864. | DOI | MR | Zbl
, , and ,[5] Boundary stabilizability of the linearized viscous Saint-Venant system. Discrete Contin. Dyn. Syst. Ser. B 15 (2011) 491–511. | MR | Zbl
, , and ,[6] Stability and Boundary Stabilization of 1-D Hyperbolic Systems. PNLDE Subseries in Control. Birkhäuser, Basel (2016). | DOI | MR
and ,[7] On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Netw. Heterog. Media 4 (2009) 177–187. | DOI | MR | Zbl
, and ,[8] A characteristic equation associated to an eigenvalue problem on c2-networks. Linear Algebra Appl. 71 (1985) 309–325. | DOI | MR | Zbl
,[9] Classical solvability of linear parabolic equations on networks. J. Differ. Equ. 72 (1988) 316–337. | DOI | MR | Zbl
,[10] Sturm-Liouville eigenvalue problems on networks. Math. Methods Appl. Sci. 10 (1988) 383–395. | DOI | MR | Zbl
,[11] Introduction to Quantum Graphs. Vol. 186 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2013). | MR | Zbl
and ,[12] Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011). | DOI | MR | Zbl
,[13] Controllability and stabilizability of the linearized compressible Navier-Stokes system in one dimension. SIAM J. Control Optim. 50 (2012) 2959–2987. | DOI | MR | Zbl
, and ,[14] Control and Nonlinearity. Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007). | MR | Zbl
,[15] The rate at which energy decays in a damped string. Commun. Partial Differ. Equ. 19 (1994) 213–243. | DOI | MR | Zbl
and ,[16] Wave Propagation, Observation and Control in 1-d Flexible Multi-Structures. Vol. 50 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer-Verlag, Berlin (2006). | DOI | MR | Zbl
and ,[17] Mathematical Analysis and Numerical Methods for Science and Technology. In Vol. 3 of Spectral theory and applications, With the collaboration of Michel Artola and Michel Cessenat, Translated from the French by John C. Amson. Springer-Verlag, Berlin (1990). | MR | Zbl
and ,[18] Introduction à quelques problèmes d’EDP. Notes du groupe de travail de l’équipe EDP du Laboratoire de Mathématiques et leurs Applications de Valenciennes. Editions universitaires européennes (2014).
and ,[19] Boundary feedback control in networks of open channels. Autom. J. IFAC 39 (2003) 1365–1376. | DOI | MR | Zbl
, , , and ,[20] Etude des équations de la magnéto-hydrodynamique stationnaire et de leur approximation par éléments finis. Thèse de 3eme cycle, Université Pierre et Marie Curie (1982).
,[21] Viscous potential free-surface flows in a fluid layer of finite depth. C. R. Math. Acad. Sci. Paris 345 (2007) 113–118. | DOI | MR | Zbl
and ,[22] Les inéquations en mécanique et en physique. Travaux et Recherches Mathématiques, No. 21, Dunod, Paris (1972). | MR | Zbl
and ,[23] Global existence of weak solutions for a viscous two-phase model. J. Differ. Equ. 245 (2008) 2660–2703. | DOI | MR | Zbl
and ,[24] Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5 (1978) 28–63. | Numdam | MR | Zbl
and ,[25] Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Vol. 5 of Springer Series in Computational Mathematics. Springer, Berlin (1986). | DOI | MR | Zbl
and ,[26] Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ. Math. J. 44 (1995) 603–676. | DOI | MR | Zbl
and ,[27] Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces. Ann. Differ. Equ. 1 (1985) 43–56. | MR | Zbl
,[28] Boundary stabilization, observation and control of Maxwell’s equations. PanAm. Math. J. 4 (1994) 47–61. | MR | Zbl
,[29] Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures. Birkhäuser, Boston (1994). | DOI | MR | Zbl
, and ,[30] Derivation of a viscous Boussinesq system for surface water waves. Asymptot. Anal. 94 (2015) 309–345. | MR | Zbl
,[31] On the modelling and stabilization of flows in networks of open canals. SIAM J. Control Optim. 41 (2002) 164–180. | DOI | MR | Zbl
and ,[32] Connecting of local operators and evolution equations on networks, in Potential Theory, Copenhagen 1979 (Proc. Colloq., Copenhagen, 1979). Vol. 787 of Lecture Notes in Math. Springer, Berlin (1980) 219–234. | DOI | MR | Zbl
,[33] Finite element methods for Maxwell’s equations. Numerical Analysis and Scientific Computation Series Oxford Univ. Press, New York (2003). | MR | Zbl
,[34] On a Lp-estimate for the linearized compressible Navier-Stokes equations with the Dirichlet boundary conditions. J. Differ. Equ. 186 (2002) 377–393. | DOI | MR | Zbl
and ,[35] Spectre des réseaux topologiques finis. Bull. Sc. Math., 2ème série 111 (1987) 401–413. | MR | Zbl
,[36] Exact boundary controllability of Maxwell’s equations in heterogeneous media and an application to an inverse source problem. SIAM J. Control Optim. 38 (2000) 1145–1170. | DOI | MR | Zbl
,[37] Finite-time stabilization of 2 × 2 hyperbolic systems on tree-shaped networks. SIAM J. Control Optim. 52 (2014) 143–163. | DOI | MR | Zbl
and ,[38] Contrôle et stabilisation d’ondes électromagnétiques. ESAIM: COCV 5 (2000) 87–137. | Numdam | MR | Zbl
,[39] Observability and controllability of Maxwell’s equations. Rend. Mat. Appl. 19 (1999) 523–546. | MR | Zbl
,[40] On the spectrum of C0-semigroups. Trans. Amer. Math. Soc. 284 (1984) 847–857. | MR | Zbl
,[41] About the resolvent of an operator from fluid dynamics. Math. Z. 194 (1987) 183–191. | DOI | MR | Zbl
,Cité par Sources :