The minimal resistance problem in a class of non convex bodies
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 27.

We characterize the solution to the Newton minimal resistance problem in a class of radial q-concave profiles. We also give the corresponding result for one-dimensional profiles. Moreover, we provide a numerical optimization algorithm for the general nonradial case.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018016
Classification : 49Q10, 49K30
Mots-clés : Newton minimal resistance problem, shape optimization
Mainini, Edoardo 1 ; Monteverde, Manuel 1 ; Oudet, Edouard 1 ; Percivale, Danilo 1

1
@article{COCV_2019__25__A27_0,
     author = {Mainini, Edoardo and Monteverde, Manuel and Oudet, Edouard and Percivale, Danilo},
     title = {The minimal resistance problem in a class of non convex bodies},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018016},
     zbl = {1439.49078},
     mrnumber = {3989206},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018016/}
}
TY  - JOUR
AU  - Mainini, Edoardo
AU  - Monteverde, Manuel
AU  - Oudet, Edouard
AU  - Percivale, Danilo
TI  - The minimal resistance problem in a class of non convex bodies
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018016/
DO  - 10.1051/cocv/2018016
LA  - en
ID  - COCV_2019__25__A27_0
ER  - 
%0 Journal Article
%A Mainini, Edoardo
%A Monteverde, Manuel
%A Oudet, Edouard
%A Percivale, Danilo
%T The minimal resistance problem in a class of non convex bodies
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018016/
%R 10.1051/cocv/2018016
%G en
%F COCV_2019__25__A27_0
Mainini, Edoardo; Monteverde, Manuel; Oudet, Edouard; Percivale, Danilo. The minimal resistance problem in a class of non convex bodies. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 27. doi : 10.1051/cocv/2018016. http://www.numdam.org/articles/10.1051/cocv/2018016/

[1] BlackBoxOptim.jl, A global optimization framework for Julia. Available at: https://github.com/robertfeldt/BlackBoxOptim.jl. (2019)

[2] F. Brock, V. Ferone and B. Kawohl, A symmetry problem in the calculus of variations. Calc. Var. Partial Diff. Equ. 4 (1996) 593–599. | DOI | MR | Zbl

[3] G. Buttazzo, A survey on the Newton problem of optimal profiles, in Variational Analysis and Aerospace Engineering. Vol. 33 of Optimization and Its Applications. Springer (2009) 33–48. | MR | Zbl

[4] G. Buttazzo and P. Guasoni, Shape optimization problems over classes of convex domains. J. Convex Anal. 4 (1997) 343–351. | MR | Zbl

[5] G. Buttazzo and B. Kawohl, On Newton’s problem of minimal resistance. Math. Intell. 15 (1993) 7–12. | DOI | MR | Zbl

[6] G. Buttazzo, V. Ferone and B. Kawohl, Minimum problems over sets of concave functions and related questions. Math. Nachr. 173 (1995) 71–89. | DOI | MR | Zbl

[7] M. Comte and T. Lachand-Robert, Newton’s problem of the body of minimal resistance under a single-impact assumption. Calc. Var. Partial Diff. Equ. 12 (2001) 173–211. | DOI | MR | Zbl

[8] M. Comte and T. Lachand-Robert, Existence of minimizers for the Newton’s problem of the body of minimal resistance under a single-impact assumption. J. Anal. Math. 83 (2001) 313–335. | DOI | MR | Zbl

[9] H.H. Goldstine, A History of the Calculus of Variations from the 17th Through the 19th Century. Springer-Verlag, Heidelberg (1980). | MR | Zbl

[10] T. Lachand-Robert and É. Oudet, Minimizing within convex bodies using a convex hull method. SIAM J. Optim. 16 (2005) 368–379. | DOI | MR | Zbl

[11] T. Lachand-Robert and M.A. Peletier, Newton’s problem of the body of minimal resistance in the class of convex developable functions. Math. Nachr. 226 (2001) 153–176. | DOI | MR | Zbl

[12] E. Mainini, M. Monteverde, E. Oudet and D. Percivale, Newton’s aerodynamic for non convex bodies. Rend. Lincei Mat. Appl. 28 (2017) 885–896. | MR | Zbl

[13] P. Marcellini, Nonconvex integrals of the calculus of variations, in Methods of Nonconvex Analysis (Varenna, 1989). Vol. 1446 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1990) 16–57. | DOI | MR | Zbl

[14] A. Plakhov, The problem of minimal resistance for functions and domains. SIAM J. Math. Anal. 46 (2014) 2730–2742. | DOI | MR | Zbl

[15] A. Plakhov, Newton’s problem of minimal resistance under the single impact assumption. Nonlinearity 29 (2016) 465–488. | DOI | MR | Zbl

Cité par Sources :