We characterize the solution to the Newton minimal resistance problem in a class of radial q-concave profiles. We also give the corresponding result for one-dimensional profiles. Moreover, we provide a numerical optimization algorithm for the general nonradial case.
Accepté le :
DOI : 10.1051/cocv/2018016
Mots-clés : Newton minimal resistance problem, shape optimization
@article{COCV_2019__25__A27_0, author = {Mainini, Edoardo and Monteverde, Manuel and Oudet, Edouard and Percivale, Danilo}, title = {The minimal resistance problem in a class of non convex bodies}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {25}, year = {2019}, doi = {10.1051/cocv/2018016}, zbl = {1439.49078}, mrnumber = {3989206}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2018016/} }
TY - JOUR AU - Mainini, Edoardo AU - Monteverde, Manuel AU - Oudet, Edouard AU - Percivale, Danilo TI - The minimal resistance problem in a class of non convex bodies JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2019 VL - 25 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2018016/ DO - 10.1051/cocv/2018016 LA - en ID - COCV_2019__25__A27_0 ER -
%0 Journal Article %A Mainini, Edoardo %A Monteverde, Manuel %A Oudet, Edouard %A Percivale, Danilo %T The minimal resistance problem in a class of non convex bodies %J ESAIM: Control, Optimisation and Calculus of Variations %D 2019 %V 25 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2018016/ %R 10.1051/cocv/2018016 %G en %F COCV_2019__25__A27_0
Mainini, Edoardo; Monteverde, Manuel; Oudet, Edouard; Percivale, Danilo. The minimal resistance problem in a class of non convex bodies. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 27. doi : 10.1051/cocv/2018016. http://www.numdam.org/articles/10.1051/cocv/2018016/
[1] BlackBoxOptim.jl, A global optimization framework for Julia. Available at: https://github.com/robertfeldt/BlackBoxOptim.jl. (2019)
[2] A symmetry problem in the calculus of variations. Calc. Var. Partial Diff. Equ. 4 (1996) 593–599. | DOI | MR | Zbl
, and ,[3] A survey on the Newton problem of optimal profiles, in Variational Analysis and Aerospace Engineering. Vol. 33 of Optimization and Its Applications. Springer (2009) 33–48. | MR | Zbl
,[4] Shape optimization problems over classes of convex domains. J. Convex Anal. 4 (1997) 343–351. | MR | Zbl
and ,[5] On Newton’s problem of minimal resistance. Math. Intell. 15 (1993) 7–12. | DOI | MR | Zbl
and ,[6] Minimum problems over sets of concave functions and related questions. Math. Nachr. 173 (1995) 71–89. | DOI | MR | Zbl
, and ,[7] Newton’s problem of the body of minimal resistance under a single-impact assumption. Calc. Var. Partial Diff. Equ. 12 (2001) 173–211. | DOI | MR | Zbl
and ,[8] Existence of minimizers for the Newton’s problem of the body of minimal resistance under a single-impact assumption. J. Anal. Math. 83 (2001) 313–335. | DOI | MR | Zbl
and ,[9] A History of the Calculus of Variations from the 17th Through the 19th Century. Springer-Verlag, Heidelberg (1980). | MR | Zbl
,[10] Minimizing within convex bodies using a convex hull method. SIAM J. Optim. 16 (2005) 368–379. | DOI | MR | Zbl
and ,[11] Newton’s problem of the body of minimal resistance in the class of convex developable functions. Math. Nachr. 226 (2001) 153–176. | DOI | MR | Zbl
and ,[12] Newton’s aerodynamic for non convex bodies. Rend. Lincei Mat. Appl. 28 (2017) 885–896. | MR | Zbl
, , and ,[13] Nonconvex integrals of the calculus of variations, in Methods of Nonconvex Analysis (Varenna, 1989). Vol. 1446 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1990) 16–57. | DOI | MR | Zbl
,[14] The problem of minimal resistance for functions and domains. SIAM J. Math. Anal. 46 (2014) 2730–2742. | DOI | MR | Zbl
,[15] Newton’s problem of minimal resistance under the single impact assumption. Nonlinearity 29 (2016) 465–488. | DOI | MR | Zbl
,Cité par Sources :