Last minute panic in zero sum games
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 25.

We set up a game theoretical model to analyze the optimal attacking intensity of sports teams during a game. We suppose that two teams can dynamically choose among more or less offensive actions and that the scoring probability of each team depends on both teams’ actions. We assume a zero sum setting and characterize a Nash equilibrium in terms of the unique solution of an Isaacs equation. We present results from numerical experiments showing that a change in the score has a strong impact on strategies, but not necessarily on scoring intensities. We give examples where strategies strongly depend on the score, the scoring intensities not at all.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018015
Classification : 49K35, 49M25, 91A05
Mots-clés : Nash equilibrium, Isaacs equation, Zero-sum games
Ankirchner, Stefan 1 ; Blanchet-Scalliet, Christophette 1 ; Kümmel, Kai 1

1
@article{COCV_2019__25__A25_0,
     author = {Ankirchner, Stefan and Blanchet-Scalliet, Christophette and K\"ummel, Kai},
     title = {Last minute panic in zero sum games},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018015},
     zbl = {1437.91012},
     mrnumber = {3986361},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018015/}
}
TY  - JOUR
AU  - Ankirchner, Stefan
AU  - Blanchet-Scalliet, Christophette
AU  - Kümmel, Kai
TI  - Last minute panic in zero sum games
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018015/
DO  - 10.1051/cocv/2018015
LA  - en
ID  - COCV_2019__25__A25_0
ER  - 
%0 Journal Article
%A Ankirchner, Stefan
%A Blanchet-Scalliet, Christophette
%A Kümmel, Kai
%T Last minute panic in zero sum games
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018015/
%R 10.1051/cocv/2018015
%G en
%F COCV_2019__25__A25_0
Ankirchner, Stefan; Blanchet-Scalliet, Christophette; Kümmel, Kai. Last minute panic in zero sum games. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 25. doi : 10.1051/cocv/2018015. http://www.numdam.org/articles/10.1051/cocv/2018015/

[1] S. Ankirchner, C. Blanchet-Scalliet, and M. Jeanblanc, Controlling the occupation time of an exponential martingale. Appl. Math. Optim. 76 (2015) 1–14. | MR

[2] J.-P. Aubin. Mathematical Methods of Game and Economic Theory. Vol. 7 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, New York (1979). | MR | Zbl

[3] M. Bardi, T.E.S. Raghavan and T. Parthasarathy, editors. Stochastic and Differential Games: Theory and Numerical Methods. Vol. 4 of Annals of the International Society of Dynamic Games. Birkhäuser Boston, Inc., Boston, MA, (1999). | MR | Zbl

[4] D. Beaudoin and T.B. Swartz, Strategies for pulling the goalie in hockey. Am. Stat. 64 (2012) 197–204. | DOI | MR

[5] P. Brémaud, Bang-bang controls of point processes. Adv. Appl. Probab. 8 (1976) 385–394. | DOI | MR | Zbl

[6] M. Falcone, Numerical methods for differential games based on partial differential equations. Int. Game Theor. Rev. 8 (2006) 231–272. | DOI | MR | Zbl

[7] M. Falcone and R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and Hamilton–Jacobi Equations. Society for Industrial and Applied Mathematics, Philadelphia, PA (2013). | DOI | MR

[8] E. Hairer, S. Nørsett and G. Wanner, Solving Ordinary Differential Equations I. Vol. 8 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin Heidelberg (1993). | MR | Zbl

[9] J. Jacod and A.N. Shiryaev, Limit Theorems for Stochastic Processes, 2nd edn. Vol. 288 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (2003). | MR | Zbl

[10] P. Jaillet, D. Lamberton and B. Lapeyre, Variational inequalities and the pricing of American options. Acta Appl. Math. 21 (1990) 263–289. | DOI | MR | Zbl

[11] J. Mcnamara, Optimal control of the diffusion coefficient of a simple diffusion process. Math. Oper. Res. 8 (1983) 373–380. | DOI | MR | Zbl

[12] D.G. Morrison and R.D. Wheat, Misapplications reviews: Pulling the goalie revisited. Interfaces 16 (1986) 28–34. | DOI

[13] L.F. Shampine, Numerical Solution of Ordinary Differential Equations. Chapman & Hall, New York (1994). | MR | Zbl

[14] M. Sion, On general minimax theorems. Pac. J. Math. 8 (1958) 171–176. | DOI | MR | Zbl

[15] A. Washburn, Still more on pulling the goalie. Interfaces 21 (1991) 59–64. | DOI

[16] E. Zeidler, Nonlinear Functional Analysis and its Applications. I. Fixed-point theorems, Translated from the German by Peter R. Wadsack. Springer-Verlag, New York (1986). | MR | Zbl

[17] X.L. Zhang, Numerical analysis of American option pricing in a jump-diffusion model. Math. Oper. Res. 22 (1997) 668–690. | DOI | MR | Zbl

Cité par Sources :