Existence for dislocation-free finite plasticity
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 21.

This note addresses finite plasticity under the constraint that plastic deformations are compatible. In this case, the total elastoplastic deformation of the medium is decomposed as y = ye ○ yp, where the plastic deformation yp is defined on the fixed reference configuration and the elastic deformation ye is a mapping from the varying intermediate configuration yp(Ω). Correspondingly, the energy of the medium features both Lagrangian (plastic, loads) and not Lagrangian contributions (elastic).

We present a variational formulation of the static elastoplastic problem in this setting and show that a solution is attained in a suitable class of admissible deformations. Possible extensions of the result, especially in the direction of quasistatic evolutions, are also discussed.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018014
Classification : 35K90
Mots-clés : Finite plasticity, static problem, existence, quasistatic evolution
Stefanelli, Ulisse 1

1
@article{COCV_2019__25__A21_0,
     author = {Stefanelli, Ulisse},
     title = {Existence for dislocation-free finite plasticity},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018014},
     zbl = {1442.35449},
     mrnumber = {3982967},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018014/}
}
TY  - JOUR
AU  - Stefanelli, Ulisse
TI  - Existence for dislocation-free finite plasticity
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018014/
DO  - 10.1051/cocv/2018014
LA  - en
ID  - COCV_2019__25__A21_0
ER  - 
%0 Journal Article
%A Stefanelli, Ulisse
%T Existence for dislocation-free finite plasticity
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018014/
%R 10.1051/cocv/2018014
%G en
%F COCV_2019__25__A21_0
Stefanelli, Ulisse. Existence for dislocation-free finite plasticity. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 21. doi : 10.1051/cocv/2018014. http://www.numdam.org/articles/10.1051/cocv/2018014/

[1] E. Artioli and P. Bisegna, An incremental energy minimization state update algorithm for 3D phenomenological internal-variable SMA constitutive models based on isotropic flow potentials. Int. J. Numer. Methods Eng. 105 (2016) 197–220. | DOI | MR | Zbl

[2] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63 (1976) 337–403. | DOI | MR | Zbl

[3] J.M. Ball, Global invertibility of Sobolev functions and the interpenetration of matter. Proc. R. Soc. Edinburgh Sect. A 88 (1988) 315–328. | DOI | MR | Zbl

[4] M. Barchiesi and A. Desimone, Frank energy for nematic elastomers: a nonlinear model. ESAIM: COCV 21 (2015) 372–377. | Numdam | MR | Zbl

[5] M. Barchiesi, D. Henao and C. Mora-Corral, Local invertibility in Sobolev spaces with applications to nematic elastomers and magnetoelasticity. Arch. Ration. Mech. Anal. 224 (2017) 743–816. | DOI | MR | Zbl

[6] B. Benešová, M. Kružík and A. Schlömerkemper, A Note on Locking Materials and Gradient Polyconvexity. Preprint (2017). | arXiv | MR | Zbl

[7] M.A. Biot, Mechanics of Incremental Deformations: Theory of Elasticity and Viscoelasticity of Initially Stressed Solids and Fluids, Including Thermodynamic Foundations and Applications to Finite Strain. John Wiley & Sons, Inc., New York, London, Sydney (1965). | MR

[8] C. Carstensen, K. Hackl and A. Mielke, Non-convex potentials and microstructures in finite-strain plasticity. Proc. R. Soc. Edinburgh Sect. A 458 (2002) 299–317. | DOI | MR | Zbl

[9] P. Cermelli and M. Gurtin, On the characterization of geometrically necessary dislocations in finite plasticity. J. Mech. Phys. Solids 49 (2001) 1539–1568. | DOI | Zbl

[10] P.G. Ciarlet, Mathematical Elasticity. Vol. 1 of Three Dimensional Elasticity. Elsevier (1988). | Zbl

[11] P.G. Ciarlet and J. Nečas, Injectivity and self-contact in nonlinear elasticity. Arch. Ration. Mech. Anal. 97 (1987) 171–188. | DOI | MR | Zbl

[12] R.J. Clifton, On the equivalence of FeFp and FpFe. J. Appl. Mech. 39 (1972) 287–230. | DOI

[13] S. Conti, G. Dolzmann and C. Kreisbeck, Relaxation of a model in finite plasticity with two slip systems. Math. Models Methods Appl. Sci. 23 (2013) 2111–2128. | DOI | MR | Zbl

[14] B. Dacorogna, Direct Methods in the Calculus of Variations, 2nd edn. Vol. 78 of Applied Mathematical Sciences. Springer, New York (2008). | MR | Zbl

[15] B. Dacorogna and I. Fonseca, A minimization problem involving variation of the domain. Commun. Pure Appl. Math. 45 (1992) 871–897. | DOI | MR | Zbl

[16] C. Davini, A proposal for a continuum theory of defective crystals. Arch. Ration. Mech. Anal. 96 (1986) 295–317. | DOI | MR | Zbl

[17] C. Davini and G. Parry, On the defect-preserving deformations in crystals. Int. J. Plast. 5 (1989) 337–369. | DOI | Zbl

[18] E. Davoli and G.A. Francfort, A critical revisiting of finite elasto-plasticity. SIAM J. Math. Anal. 47 (2015) 526–565. | DOI | MR | Zbl

[19] G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics. Springer, Berlin (1976). | DOI | MR | Zbl

[20] I. Fonseca and W. Gangbo, Local invertibility of Sobolev functions. SIAM J. Math. Anal. 26 (1995) 280–304. | DOI | MR | Zbl

[21] I. Fonseca and G. Parry, Equilibrium configurations of defective crystals. Arch. Ration. Mech. Anal. 120 (1992) 245–283. | DOI | MR | Zbl

[22] I. Fonseca, G. Leoni and J. Malý, Weak continuity and lower semicontinuity results for determinants. Arch. Ration. Mech. Anal. 178 (2005) 411–448. | DOI | MR | Zbl

[23] G. Francfort and A. Mielke, Existence results for a class of rate- independent material models with nonconvex elastic energies. J. Reine Angew. Math. 595 (2006) 55–91. | MR | Zbl

[24] A. Garroni, G. Leoni and M. Ponsiglione, Gradient theory for plasticity via homogenization of discrete dislocations. J. Eur. Math. Soc. (JEMS) 12 (2010) 1231–1266. | DOI | MR | Zbl

[25] A. Giacomini and M. Ponsiglione, Non-interpenetration of matter for SBV deformations of hyperelastic brittle materials. Proc. R. Soc. Edinburgh Sect. A 138 (2008) 1019–1041. | DOI | MR | Zbl

[26] V.M. Gol’Dshtein and Yu. G. Reschetnyak, Quasiconformal Mappings and Sobolev Spaces, Vol. 54. Kluwer Academic Publishers, Dordrecht, Germany (1990). | DOI | MR | Zbl

[27] D. Grandi and U. Stefanelli. Finite plasticity in P P. Part I: constitutive model. Contin. Mech. Thermodyn. 29 (2017) 97–116. | DOI | MR | Zbl

[28] D. Grandi and U. Stefanelli, Finite plasticity in P P. Part II: quasistatic evolution and linearization. SIAM J. Math. Anal. 49 (2017) 1356–1384. | DOI | MR | Zbl

[29] J.R. Greer, W.C. Oliver and W.D. Nix, Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta. Mater. 53 (2005) 1821–1830. | DOI

[30] M.E. Gurtin, Variational principles in the linear theory of viscoelasticity. Arch. Ration. Mech. Anal. 13 (1963) 179–191. | DOI | MR | Zbl

[31] M.E. Gurtin, Variational principles for linear elastodynamics. Arch. Ration. Mech. Anal. 16 (1964) 34–50. | DOI | MR | Zbl

[32] M. Gurtin, E. Fried and L. Anand, The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010). | DOI | MR

[33] S. Hencl and P. Koskela, Lectures on Mappings of Finite Distortion. Vol. 2096 of Lecture Notes in Mathematics. Springer, Cham (2014). | DOI | MR | Zbl

[34] M. Kiritani, Dislocation-free plastic deformation under high stress. Mater. Sci. Eng. A 350 (2003) 1–7. | DOI

[35] B. Klusemann and D.M. Kochmann, Microstructural pattern formation in finite-deformation single-slip crystal plasticity under cyclic loading: relaxation vs. gradient plasticity. Comput. Methods Appl. Mech. Eng. 278 (2014) 765–793. | DOI | MR | Zbl

[36] E. Kröner, Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4 (1959) 273–334. | DOI | MR | Zbl

[37] M. Kružík and T. Roubíček, Mathematical Methods in Continuum Mechanics of Solids. Interaction of Mechanics and Mathematics. Springer, Cham/Heidelberg (2018). | MR | Zbl

[38] M. Kružík and J. Zimmer, Rate-independent processes with linear growth energies and time-dependent boundary conditions. Discret. Contin. Dyn. Syst. Ser. S 5 (2012) 591–604. | MR | Zbl

[39] M. Kružík, U. Stefanelli and J. Zeman, Existence results for incompressible magnetoelasticity. Discret. Contin. Dyn. Syst. 35 (2015) 2615–2623. | DOI | MR | Zbl

[40] E. Lee, Elastic-plastic deformation at finite strains. J. Appl. Mech. 36 (1969) 1–6. | DOI | Zbl

[41] G. Leoni, A First Course in Sobolev Spaces. Vol 105 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, USA (2009). | MR | Zbl

[42] V. A. Lubarda, Duality in constitutive formulation of finite-strain elastoplasticity based on F = Fe Fp and F = FpFe decompositions. Int. J. Plast. 15 (1999) 1277–1290. | DOI | Zbl

[43] J. Lubliner, Plasticity Theory. Macmillan Publishing Company, New York (1990). | Zbl

[44] J. Mandel, Plasticité Classique et Viscoplasticité. Vol. 97 of CISM Courses and Lectures. Springer-Verlag, Berlin (1972). | MR | Zbl

[45] A. Mainik and A. Mielke. Existence results for energetic models for rate-independent systems. Calc. Var. Partial Differ. Equ. 22 (2005) 73–99. | DOI | MR | Zbl

[46] Y. Matsukawa, K. Yasunaga, M. Komatsu and M. Kiritani, Dynamic observation of dislocation-free plastic deformation in gold thin foils. Mater. Sci. Eng. A 350 (2003) 8–16. | DOI

[47] G.A. Maugin, The Thermomechanics of Plasticity and Fracture. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (1992). | MR | Zbl

[48] A. Mielke, Finite elastoplasticity, Lie groups and geodesics on SL(d), in Geometry, Dynamics, and Mechanics, edited by P. Newton, A. Weinstein and P.J. Holmes. Springer-Verlag (2002) 61–90. | MR | Zbl

[49] A. Mielke, Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Contin. Mech. Thermodyn. 15 (2003) 351–382. | DOI | MR | Zbl

[50] A. Mielke, Existence of minimizers in incremental elasto-plasticity with finite strains. SIAM J. Math. Anal. 36 (2004) 384–404. | DOI | MR | Zbl

[51] A. Mielke and S. Müller, Lower semicontinuity and existence of minimizers in incremental finite-strain elastoplasticity. Z. Angew. Math. Mech. (ZAMM) 86 (2006) 233–250. | DOI | MR | Zbl

[52] A. Mielke and T. Roubíček, Rate-independent systems, in Theory and Application. Vol. 193 of Applied Mathematical Sciences. Springer, New York (2015). | MR | Zbl

[53] C.B. Morrey, Multiple Integrals in the Calculus of Variations. Springer-Verlag, Berlin (1966). | DOI | MR | Zbl

[54] S. Müller, T. Qi and B. S. Yan, On a new class of elastic deformations not allowing for cavitation. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 11 (1994) 217–243. | DOI | Numdam | MR | Zbl

[55] P.M. Naghdi, A critical review of the state of finite plasticity. J. Appl. Math. Phys. 41 (1990) 315–394. | MR | Zbl

[56] P. Neff, A. Sydow and C. Wieners, Numerical approximation of incremental infinitesimal gradient plasticity. Int. J. Numer. Methods Eng. 77 (2009) 414–436. | DOI | MR | Zbl

[57] S. Nemat-Nasser, Decomposition of strain measures and their rates in finite deformation elastoplasticity. Int. J. Solids Struct. 15 (1979) 155–166. | DOI | Zbl

[58] M. Ortiz and E.A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47 (1999) 397–462 | DOI | MR | Zbl

[59] M. Ortiz, E. A. Repetto and L. Stainer, A theory of subgrain dislocation structures. J. Mech. Phys. Solids 48 (2000) 2077–2114. | DOI | MR | Zbl

[60] C. Reina and S. Conti, Kinematic description of crystal plasticity in the finite kinematic framework: a micromechanical understanding of F = FeFp. J. Mech. Phys. Solids 67 (2014) 40–61. | DOI | MR | Zbl

[61] C. Reina, A. Schlömerkemper and S. Conti, Derivation of F = FeFp as the continuum limit of crystalline slip. J. Mech. Phys. Solids 89 (2016) 231–254. | DOI | MR | Zbl

[62] Yu.G. Reshetnyak, Weak convergence and completely additive vector functions on a set. Sibir. Math. 9 (1968) 1039–1045. | DOI | Zbl

[63] T. Roubíček, Nonlinear Partial Differential Equations With Applications, 2nd edn. Vol. 153 of International Series of Numerical Mathematics. Birkhäuser/Springer, Basel AG, Basel (2013). | DOI | MR | Zbl

[64] T. Roubíček and G. Tomassetti, A thermodynamically consistent model of magneto-elastic materials under diffusion at large strains and its analysis. Z. Angew. Math. Phys. 69 (2018) 55. | DOI | MR | Zbl

[65] P. Rybka and M. Luskin, Existence of energy minimizers for magnetostrictive materials. SIAM J. Math. Anal. 36 (2005) 2004–2019. | DOI | MR | Zbl

[66] I. Ryu, W.D. Nix and W. Cai, Plasticity of bcc micropillars controlled by competition between dislocation multiplication and depletion. Acta Mater. 61 (2013) 3233–3241. | DOI

[67] T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki et al., Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300 (2003) 464–467. | DOI

[68] V. Šverák, Regularity properties of deformations with finite energy. Arch. Ration. Mech. Anal. 100 (1988) 105–127. | DOI | MR | Zbl

[69] Q. Tang, Almost-everywhere injectivity in nonlinear elasticity. Proc. R. Soc. Edinburgh Sect. A 109 (1988) 79–95. | DOI | MR | Zbl

[70] C. Truesdell and W. Noll, The Nonlinear Field Theories Handbuch der Physik, Band III/3. Springer-Verlag, Berlin (1965).

[71] M.D. Uchic, D.M. Dimiduk, J.N. Florando and W.D. Nix, Sample dimensions influence strength and crystal plasticity. Science 305 (2004) 986–989. | DOI

Cité par Sources :