Macroscopic limit of the Becker–Döring equation via gradient flows
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 22.

This work considers gradient structures for the Becker–Döring equation and its macroscopic limits. The result of Niethammer [J. Nonlinear Sci. 13 (2003) 115–122] is extended to prove the convergence not only for solutions of the Becker–Döring equation towards the Lifshitz–Slyozov–Wagner equation of coarsening, but also the convergence of the associated gradient structures. We establish the gradient structure of the nonlocal coarsening equation rigorously and show continuous dependence on the initial data within this framework. Further, on the considered time scale the small cluster distribution of the Becker–Döring equation follows a quasistationary distribution dictated by the monomer concentration.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018011
Classification : 49J40, 34A34, 35L65, 49J45, 49K15, 60J27, 82C26
Mots-clés : Gradient flows, energy-dissipation principle, evolutionary Gamma convergence, quasistationary states, well-prepared initial conditions
Schlichting, André 1

1
@article{COCV_2019__25__A22_0,
     author = {Schlichting, Andr\'e},
     title = {Macroscopic limit of the {Becker{\textendash}D\"oring} equation via gradient flows},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018011},
     mrnumber = {3986360},
     zbl = {1440.49013},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018011/}
}
TY  - JOUR
AU  - Schlichting, André
TI  - Macroscopic limit of the Becker–Döring equation via gradient flows
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018011/
DO  - 10.1051/cocv/2018011
LA  - en
ID  - COCV_2019__25__A22_0
ER  - 
%0 Journal Article
%A Schlichting, André
%T Macroscopic limit of the Becker–Döring equation via gradient flows
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018011/
%R 10.1051/cocv/2018011
%G en
%F COCV_2019__25__A22_0
Schlichting, André. Macroscopic limit of the Becker–Döring equation via gradient flows. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 22. doi : 10.1051/cocv/2018011. http://www.numdam.org/articles/10.1051/cocv/2018011/

[1] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser-Verlag, Basel (2005) | MR | Zbl

[2] J.M. Ball, J. Carr and O. Penrose, The Becker–Döring cluster equations: basic properties and asymptotic behaviour of solutions. Commun. Math. Phys. 104 (1986) 657–692 | DOI | MR | Zbl

[3] R. Becker and W. Döring, Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Ann. Phys. 24 (1935) 719–752 | DOI | Zbl

[4] J. Cañizo, A. Einav and B. Lods, Trend to equilibrium for the Becker–Döring equations: an analogue of Cercignani’s conjecture. Anal. & PDE 10 (2017) 1663–1708 | DOI | MR | Zbl

[5] J.-F. Collet, T. Goudon, F. Poupaud and A. Vasseur, The Becker–Döring system and its Lifshitz-Slyozov limit. SIAM J. Appl. Math. 62 (2002) 1488–1500 | DOI | MR | Zbl

[6] J.G. Conlon and A. Schlichting, A Non-local Problem for the Fokker-Planck Equation Related to the Becker-Döring Model. Preprint (2017) | arXiv | MR

[7] E. De Giorgi, A. Marino and M. Tosques, Problems of evolution in metric spaces and maximal decreasing curve. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 68 (1980) 180–187 | MR | Zbl

[8] J. Deschamps, E. Hingant and R. Yvinec, Quasi Steady State Approximation of the Small Clusters in Becker–Döring Equations Leads to Boundary Conditions in the Lifshitz-Slyozov Limit. Commun. Math. Sci. 15 (2017) 1353–1384 | DOI | MR | Zbl

[9] W. Dreyer and F. Duderstadt, On the Becker–Döring theory of nucleation of liquid droplets in solids. J. Stat. Phys. 123 (2006) 55–87 | DOI | Zbl

[10] M. Erbar, M. Fathi, V. Laschos and A. Schlichting, Gradient flow structure for McKean-Vlasov equations on discrete spaces. Discret. Contin. Dyn. Syst. 36 (2016) 6799–6833 | DOI | MR | Zbl

[11] M. Herrmann, M. Naldzhieva and B. Niethammer, On a thermodynamically consistent modification of the Becker–Döring equations. Physica D 222 (2006) 116–130 | DOI | MR | Zbl

[12] P. Laurençot and S. Mischler, From the Becker–Döring to the Lifshitz–Slyozov–Wagner equations. J. Stat. Phys. 106 (2002) 957–991 | DOI | MR | Zbl

[13] I.M. Lifshitz and V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19 (1961) 35–50 | DOI

[14] J. Maas, Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261 (2011) 2250–2292 | DOI | MR | Zbl

[15] A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24 (2011) 1329 | DOI | MR | Zbl

[16] B. Niethammer, On the evolution of large clusters in the Becker–Döring model. J. Nonlinear Sci. 13 (2003) 115–122 | DOI | Zbl

[17] B. Niethammer, Macroscopic limits of the Becker-Döring equations. Commun. Math. Sci. 2 (2004) 85–92 | DOI | MR | Zbl

[18] B. Niethammer and R.L. Pego, On the initial-value problem in the Lifshitz–Slyozov–Wagner theory of Ostwald ripening. SIAM J. Math. Anal. 31 (2000) 467–485 | DOI | MR | Zbl

[19] B. Niethammer and R.L. Pego, Well-posedness for measure transport in a family of nonlocal domain coarsening models. Indiana Univ. Math. J. 54 (2005) 499–530 | DOI | MR | Zbl

[20] F. Otto and M. Reznikoff, Slow motion of gradient flows. J. Differ. Equ. 237 (2007) 372–420 | DOI | MR | Zbl

[21] O. Penrose, Metastable states for the Becker–Döring cluster equations. Commun. Math. Phys. 541 (1989) 515–541 | DOI | MR | Zbl

[22] O. Penrose, The Becker–Döring equations at large times and their connection with the LSW theory of coarsening. J. Stat. Phys. 89 (1997) 305–320 | DOI | MR | Zbl

[23] E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau. Commun. Pure Appl. Math. 57 (2004) 1627–1672 | DOI | MR | Zbl

[24] S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discret. Contin. Dyn. Syst. 31 (2011) 1427–1451 | DOI | MR | Zbl

[25] C. Wagner, Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung). Z. Elektrochem. 65 (1961) 581–591

Cité par Sources :