An isoperimetric problem with a Coulombic repulsion and attractive term
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 14.

We study an energy given by the sum of the perimeter of a set, a Coulomb repulsion term of the set with itself and an attraction term of the set to a point charge. We prove that there exists an optimal radius r0 such that if r < r0 the ball B$$ is a local minimizer with respect to any other set with same measure. The global minimality of balls is also addressed.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018008
Classification : 49Q20
Mots-clés : Isoperimetric inequality, Coulombic potential
La Manna, Domenico Angelo 1

1
@article{COCV_2019__25__A14_0,
     author = {La Manna, Domenico Angelo},
     title = {An isoperimetric problem with a {Coulombic} repulsion and attractive term},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018008},
     zbl = {1444.49016},
     mrnumber = {3963665},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018008/}
}
TY  - JOUR
AU  - La Manna, Domenico Angelo
TI  - An isoperimetric problem with a Coulombic repulsion and attractive term
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018008/
DO  - 10.1051/cocv/2018008
LA  - en
ID  - COCV_2019__25__A14_0
ER  - 
%0 Journal Article
%A La Manna, Domenico Angelo
%T An isoperimetric problem with a Coulombic repulsion and attractive term
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018008/
%R 10.1051/cocv/2018008
%G en
%F COCV_2019__25__A14_0
La Manna, Domenico Angelo. An isoperimetric problem with a Coulombic repulsion and attractive term. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 14. doi : 10.1051/cocv/2018008. http://www.numdam.org/articles/10.1051/cocv/2018008/

[1] E. Acerbi, N. Fusco and M. Morini, Minimality via second variation for a nonlocal isoperimetric problem. Commun. Math. Phys. 322 (2013) 515–557. | DOI | MR | Zbl

[2] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press (2000). | DOI | MR | Zbl

[3] V. Bögelein, F. Duzaar and N. Fusco, A sharp quantitative isoperimetric inequality in higher codimension. Rend. Lincei. Mat. Appl. 26 (2015) 309–362. | MR | Zbl

[4] L. Brasco, G. De Philippis and B. Velichkov, Faber-Krahn inequalities in sharp quantitative form. Duke Math. J. 164 (2016) 1777–1832. | MR | Zbl

[5] M. Cicalese and G.P. Leonardi, A selection principle for the sharp quantitative isoperimetric inequality. Arch. Ration. Mech. Anal. 206 (2012) 617–643. | DOI | MR | Zbl

[6] A. Figalli, N. Fusco, F. Maggi, V. Millot and M. Morini, Isoperimetry and stability properties of balls with respect to nonlocal energies. Commun. Math. Phys. 336 (2015) 441–507. | DOI | MR | Zbl

[7] R.L. Frank, R. Killip and P.T. Nam, Nonexistence of large nuclei in the liquid drop model. Lett. Math. Phys. 106 (2016) 1033–1036. | DOI | MR | Zbl

[8] B. Fuglede, Stability in the isoperimetric problem for convex or nearly spherical domains in ℝn. Trans. Am. Math. Soc. 314 (1989) 619–638. | MR | Zbl

[9] N. Fusco, The quantitative isoperimetric inequality and related topics. Bull. Math. Sci. 5 (2015) 517–607. | DOI | MR | Zbl

[10] N. Fusco and V. Julin, A strong form of the quantitative isoperimetric inequality. Calc. Var. Partial Differ. Equ. 50 (2014) 925–937. | DOI | MR | Zbl

[11] V. Julin, Isoperimetric problem with a Coulombic repulsive term. Indiana Univ. Math. J. 63 (2014) 77–89. | DOI | MR | Zbl

[12] H. Knüpfer and C.B. Muratov, On an isoperimetric problem with a competing nonlocal term II: the general case. Commun. Pure Appl. Math. 67 (2014) 1974–1994. | DOI | MR | Zbl

[13] J. Lu and F. Otto, Nonexistence of minimizer for Thomas-Fermi-Dirac-von Weizsäcker model. Commun. Pure Appl. Math. 67 (2014) 1605–1617. | DOI | MR | Zbl

[14] J. Lu and F. Otto, An Isoperimetric Problem With Coulomb Repulsion and Attraction to a Background Nucleus. Preprint (2015). | arXiv

[15] F. Maggi, An introduction to geometric measure theory, in Sets of finite perimeter and geometric variational problems. Vol. 135 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2012). | MR | Zbl

[16] C.B. Muratov and A. Zaleski, On an isoperimetric problem with a competing non-local term: quantitative results. Ann. Global Anal. Geom. 47 (2015) 63–80. | DOI | MR | Zbl

[17] I. Tamanini, Regularity results for almost minimal oriented hypersurfaces. Quad. Mat. 1 (1984) 1–92. | Zbl

Cité par Sources :