The cost of controlling strongly degenerate parabolic equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 2.

We consider the typical one-dimensional strongly degenerate parabolic operator Pu = $$ − ($$)$$ with 0 < x < and α ∈ (0, 2), controlled either by a boundary control acting at x = , or by a locally distributed control. Our main goal is to study the dependence of the so-called controllability cost needed to drive an initial condition to rest with respect to the degeneracy parameter α. We prove that the control cost blows up with an explicit exponential rate, as e$$, when α → 2 and/or T → 0+. Our analysis builds on earlier results and methods (based on functional analysis and complex analysis techniques) developed by several authors such as Fattorini-Russel, Seidman, Güichal, Tenenbaum-Tucsnak and Lissy for the classical heat equation. In particular, we use the moment method and related constructions of suitable biorthogonal families, as well as new fine properties of the Bessel functions J$$ of large order ν (obtained by ordinary differential equations techniques).

DOI : 10.1051/cocv/2018007
Classification : 35K65, 33C10, 93B05, 93B60, 35P10, 34B08
Mots-clés : Degenerate parabolic equations, null controllability, moment problem, Bessel functions
@article{COCV_2020__26_1_A2_0,
     author = {Cannarsa, P. and Martinez, P. and Vancostenoble, J.},
     title = {The cost of controlling strongly degenerate parabolic equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2018007},
     mrnumber = {4050578},
     zbl = {1442.93016},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018007/}
}
TY  - JOUR
AU  - Cannarsa, P.
AU  - Martinez, P.
AU  - Vancostenoble, J.
TI  - The cost of controlling strongly degenerate parabolic equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018007/
DO  - 10.1051/cocv/2018007
LA  - en
ID  - COCV_2020__26_1_A2_0
ER  - 
%0 Journal Article
%A Cannarsa, P.
%A Martinez, P.
%A Vancostenoble, J.
%T The cost of controlling strongly degenerate parabolic equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018007/
%R 10.1051/cocv/2018007
%G en
%F COCV_2020__26_1_A2_0
Cannarsa, P.; Martinez, P.; Vancostenoble, J. The cost of controlling strongly degenerate parabolic equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 2. doi : 10.1051/cocv/2018007. http://www.numdam.org/articles/10.1051/cocv/2018007/

[1] F. Alabau-Boussouira, P. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability. J. Evol. Equ. 6 (2006) 161–204. | DOI | MR | Zbl

[2] F. Ammar Khodja, A. Benabdallah, M. González-Burgos and L. De Teresa, Minimal time for the null controllability of parabolic systems: The effect of the condensation index of complex sequences. J. Funct. Anal. 267 (2014) 2077–2151. | DOI | MR | Zbl

[3] K. Beauchard, P. Cannarsa and R. Guglielmi, Null controllability of Grushin-type operators in dimension two. J. Eur. Math. Soc. 16 (2014) 67–101. | MR | Zbl

[4] A. Benabdallah, F. Boyer, M. González-Burgos and G. Olive, Sharp estimates of the one-dimensional boundary control cost for parabolic systems and applications to the N-dimensional boundary null controllability in cylindrical domains. SIAM J. Control Optim. 52 (2014) 2970–3001. | DOI | MR | Zbl

[5] A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and control of infinite-dimensional systems. Vol. 1 of Systems and Control: Foundations and Applications, Birkhauser Boston, Boston (1992). | Zbl

[6] M. Campiti, G. Metafune and D. Pallara, Degenerate self-adjoint evolution equations on the unit interval. Semigroup Forum 57 (1998) 1–36. | DOI | MR | Zbl

[7] P. Cannarsa, G. Fragnelli and D. Rocchetti, Null controllability of degenerate parabolic operators with drift. Netw. Heterog. Media 2 (2007) 695–715. | DOI | MR | Zbl

[8] P. Cannarsa, P. Martinez and J. Vancostenoble, Null Controllability of degenerate heat equations. Adv. Differ. Equ. 10 (2005) 153–190. | MR | Zbl

[9] P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators. SIAM J. Control Optim. 47 (2008) 1–19. | DOI | MR | Zbl

[10] P. Cannarsa, P. Martinez and J. Vancostenoble, Global Carleman estimates for degenerate parabolic operators with applications. Memoirs of the American Mathematical Society. AMS (2016). | MR | Zbl

[11] P. Cannarsa, P. Martinez and J. Vancostenoble, The cost of controlling weakly degenerate parabolic equations by boundary controls. Math. Control Relat. Fields 7 (2017) 171–211. | DOI | MR | Zbl

[12] P. Cannarsa, P. Martinez and J. Vancostenoble, Precise estimates for biorthogonal families under asymptotic gap conditions. Preprint (2017). | arXiv | MR

[13] P. Cannarsa, D. Rocchetti and J. Vancostenoble, Generation of analytic semi-groups in L2 for a class of second order degenerate elliptic operators. Control Cybern 37 (2008) 831–878. | MR | Zbl

[14] P. Cannarsa, J. Tort and M. Yamamoto, Unique continuation and approximate controllability for a degenerate parabolic equation. Appl. Anal. 91 (2012) 140–1425. | DOI | MR | Zbl

[15] J.M. Coron and S. Guerrero, Singular optimal control: A linear 1-D parabolic-hyperbolic example. Asymp. Anal. 44 (2005) 237–257. | MR | Zbl

[16] S. Ervedoza and E. Zuazua, Sharp observability estimates for heat equations. Arch. Ration. Mech. Anal. 202 (2011) 975–1017. | DOI | MR | Zbl

[17] H.O. Fattorini and D.L. Russel, Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Rat. Mech. Anal. 4 (1971) 272–292. | DOI | MR | Zbl

[18] H.O. Fattorini and D.L. Russel, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations. Quart. Appl. Math. 32 (1974/75) 45–69. | DOI | MR | Zbl

[19] H.O. Fattorini, Boundary control of temperature distributions in a parallelepipedon. SIAM J. Control 13 (1975) 1. | DOI | MR | Zbl

[20] E. Fernandez-Cara and E. Zuazua, The cost of approximate controllability for heat equations: the linear case. Adv. Differ. Equ. 5 (2000) 465–514. | MR | Zbl

[21] O. Glass, A complex-analytic approach to the problem of uniform controllability of transport equation in the vanishing viscosity limit. J. Funct. Anal. 258 (2010) 852–868. | DOI | MR | Zbl

[22] O. Glass and S. Guerrero, Uniform controllability of a transport equation in zero diffusion-dispersion limit. Math. Models Methods Appl. Sci. 19 (2009) 1567–1601. | DOI | MR | Zbl

[23] S. Guerrero and G. Lebeau, Singular optimal control for a transport-diffusion equation. Commun. Part. Differ. Equ. 32 (2007) 1813–1836. | DOI | MR | Zbl

[24] M. Gueye, Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations. SIAM J. Control Optim. 52 (2014) 2037–2054. | DOI | MR | Zbl

[25] E.N. Güichal, A lower bound of the norm of the control operator for the heat equation. J. Math. Anal. Appl. 110 (1985) 519–527. | DOI | MR | Zbl

[26] S. Hansen, Bounds on functions biorthogonal to sets of complex exponentials; control of damped elastic systems. J. Math. Anal. Appl. 158 (1991) 487–508. | DOI | MR | Zbl

[27] A. Haraux, in Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. X (Paris, 1987-1988). Vol. 220 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow (1991) 241–271. | MR | Zbl

[28] E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen. Band 1: Gewöhnliche Differentialgleichungen, 3rd ed. Chelsea Publishing Company, New York, 1948. | Zbl

[29] V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer, Berlin, 2005. | DOI | MR | Zbl

[30] I. Krasikov, On the Bessel function J ν ( x ) in the transition zone. LMS J. Comput. Math. 17 (2014) 01. | DOI | MR | Zbl

[31] J. Lagnese, Control of wave processes with distributed controls supported on a subregion. SIAM J. Control Optim. 21 (1983) 68–85. | DOI | MR | Zbl

[32] L.J. Landau, Bessel functions: monotonicity and bounds. J Lond. Math. Soc. 61 (2000) 197–215. | DOI | MR | Zbl

[33] N.N. Lebedev, Special Functions and their Applications, Dover Publications, New York, 1972. | MR | Zbl

[34] P. Lissy, On the cost of fast controls for some families of dispersive or parabolic equations in one space dimension. SIAM J. Control Optim. 52 (2014) 2651–2676. | DOI | MR | Zbl

[35] P. Lissy, Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations and a new lower bound concerning the uniform controllability of the 1-D transport-diffusion equation. J. Differ. Equ. 259 (2015) 5331–5352. | DOI | MR | Zbl

[36] L. Lorch and M.E. Muldoon, Monotonic sequences related to zeros of Bessel functions. Numer. Algorithms 49 (2008) 221–233. | DOI | MR | Zbl

[37] L. Miller, Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time. J. Differ. Equ. 204 (2004) 202–226. | DOI | MR | Zbl

[38] L. Miller, How violent are fast controls for Schrödinger and plate vibrations? Arch. Ration. Mech. Anal. 172 (2004) 429–456. | DOI | MR | Zbl

[39] L. Miller, Controllability cost of conservative systems: Resolvent condition and transmutation. J. Funct. Anal. 218 (2005) 425–444. | DOI | MR | Zbl

[40] L. Miller, The control transmutation method and the cost of fast controls. SIAM J. Control Optim. 45 (2006) 762–772. | DOI | MR | Zbl

[41] Y. Privat, E. Trélat and E. Zuazua, Optimal observation of the one-dimensional wave equation. J. Fourier Anal. Appl. 19 (2013) 514–544. | DOI | MR | Zbl

[42] Y. Privat, E. Trélat and E. Zuazua, Optimal shape and location of sensors for parabolic equations with random initial data. Arch. Ration. Mech. Anal. 216 (2015) 921–981. | DOI | MR | Zbl

[43] C.K. Qu and R. Wong, Best possible upper and lower bounds for the zeros of the Bessel function J ν ( x ) . Trans. Am. Math. Soc. 351 (1999) 2833–59. | DOI | MR | Zbl

[44] L. Schwartz, Étude des sommes d’exponentielles, deuxième édition. Paris, Hermann (1959). | MR | Zbl

[45] T.I. Seidman, Two results on exact boundary control of parabolic equations. Appl. Math. Optim. 11 (1984) 145–152. | DOI | MR | Zbl

[46] T.I. Seidman, S.A. Avdonin and S.A. Ivanov, The window problem for series of complex exponentials. J. Fourier Anal. Appl. 6 (2000) 233–254. | DOI | MR | Zbl

[47] T.I. Seidman, How violent are fast controls? Math. Control Signals Syst. 1 (1988) 89–95. | DOI | MR | Zbl

[48] G. Tenenbaum, M. Tucsnak, New blow-up rates for fast controls of Schrodinger and heat equations. J. Differ. Equ. 243 (2007) 70–100. | DOI | MR | Zbl

[49] G. Tenenbaum and M. Tucsnak, On the null controllability of diffusion equations, ESAIM: COCV 17 (2011) 1088–1100. | Numdam | MR | Zbl

[50] G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge, England (1944). | MR | Zbl

Cité par Sources :

The first author was partly supported by the University of Roma Tor Vergata (Consolidate the Foundations 2015) and Istituto Nazionale di Alta Matematica (GNAMPA 2017 Reseach Projects). The second author was partly supported by Istituto Nazionale di Alta Matematica (GNAMPA 2017 Reseach Projects).