Optimal control of time-discrete two-phase flow driven by a diffuse-interface model
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 13.

We propose a general control framework for two-phase flows with variable densities in the diffuse interface formulation, where the distribution of the fluid components is described by a phase field. The flow is governed by the diffuse interface model proposed in Abels et al. [M3AS 22 (2012) 1150013]. On the basis of the stable time discretization proposed in Garcke et al. [Appl. Numer. Math. 99 (2016) 151] we derive necessary optimality conditions for the time-discrete and the fully discrete optimal control problem. We present numerical examples with distributed and boundary controls, and also consider the case, where the initial value of the phase field serves as control variable.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018006
Classification : 35Q35, 49N45, 49M05, 65K10
Mots-clés : Optimal control, boundary control, initial value control, two-phase flow, Cahn–Hilliard, Navier–Stokes, diffuse-interface models
Garcke, Harald 1 ; Hinze, Michael 1 ; Kahle, Christian 1

1
@article{COCV_2019__25__A13_0,
     author = {Garcke, Harald and Hinze, Michael and Kahle, Christian},
     title = {Optimal control of time-discrete two-phase flow driven by a diffuse-interface model},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018006},
     zbl = {1437.35575},
     mrnumber = {3963528},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018006/}
}
TY  - JOUR
AU  - Garcke, Harald
AU  - Hinze, Michael
AU  - Kahle, Christian
TI  - Optimal control of time-discrete two-phase flow driven by a diffuse-interface model
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018006/
DO  - 10.1051/cocv/2018006
LA  - en
ID  - COCV_2019__25__A13_0
ER  - 
%0 Journal Article
%A Garcke, Harald
%A Hinze, Michael
%A Kahle, Christian
%T Optimal control of time-discrete two-phase flow driven by a diffuse-interface model
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018006/
%R 10.1051/cocv/2018006
%G en
%F COCV_2019__25__A13_0
Garcke, Harald; Hinze, Michael; Kahle, Christian. Optimal control of time-discrete two-phase flow driven by a diffuse-interface model. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 13. doi : 10.1051/cocv/2018006. http://www.numdam.org/articles/10.1051/cocv/2018006/

[1] H. Abels and D. Breit, Weak solutions for a non-Newtonian diffuse interface model with different densities. Nonlinearity 29 (2016) 3426–3453. | DOI | MR | Zbl

[2] H. Abels, H. Garcke and G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22 (2012) 1150013. | DOI | MR | Zbl

[3] H. Abels, D. Depner and H. Garcke, Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities. J. Math. Fluid Mech. 15 (2013) 453–480. | DOI | MR | Zbl

[4] H. Abels, D. Depner and H. Garcke, On an incompressible Navier–Stokes/Cahn–Hilliard system with degenerate mobility. Ann. Inst. Henri Poincaré (C) Non Lin. Anal. 30 (2013) 1175–1190. | DOI | Numdam | MR | Zbl

[5] R.A. Adams and J.H.F. Fournier, Sobolev Spaces, 2nd edn. Vol. 140 of Pure and Applied Mathematics. Elsevier (2003). | MR | Zbl

[6] S. Aland, Time integration for diffuse interface models for two-phase flow. J. Comput. Phys. 262 (2014) 58–71. | DOI | MR | Zbl

[7] H.W. Alt, Linear Functional Analysis. Springer (2016). | DOI | MR | Zbl

[8] P.R. Amestoy, I.S. Duff, J. Koster and J.-Y. L’Excellent, A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23 (2001) 15–41. | DOI | MR | Zbl

[9] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. Mcinnes, K. Rupp, B.F. Smith, S. Zampini and H. Zhang, PETSc. Available at http://www.mcs.anl.gov/petsc (2014).

[10] L. Baňas, M. Klein and A. Prohl, Control of interface evolution in multiphase fluid flows. SIAM J. Control Optim. 52 (2014) 2284–2318. | DOI | MR | Zbl

[11] J.W. Barrett, H. Garcke and R. Nürnberg, Finite element approximation of a phase field model for surface diffusion of voids in a stressed solid. Math. Comput. 75 (2005) 7–41. | DOI | MR | Zbl

[12] M. Berggren, Numerical solution of a flow-control problem: vorticity reduction by dynamic boundary action. SIAM J. Sci. Comput. 19 (1998) 829–860. | DOI | MR | Zbl

[13] T.R. Bewley, P. Moin and R. Temam, DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms. J. Fluid Mech. 447 (2001) 179–225. | DOI | MR | Zbl

[14] L. Blank and C. Rupprecht, An extension of the projected gradient method to a Banach space setting with application in structural topology optimization. SIAM J. Control Optim. 55 (2017) 1481–1499. | DOI | MR | Zbl

[15] J.F. Blowey and C.M. Elliott, The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy: Part I. Mathematical analysis. Eur. J. Appl. Math. 2 (1991) 233–280. | DOI | MR | Zbl

[16] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Vol. 15 of Texts in Applied Mathematics. Springer (2008). | DOI | MR | Zbl

[17] C. Carstensen and R. Verfürth, Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal. 36 (1999) 1571–1587. | DOI | MR | Zbl

[18] K. Chrysafinos, Stability Estimates of Discontinuous Galerkin Time-Stepping Schemes for the Allen–Cahn Equation and Applications to Optimal Control. Preprint (2016). | arXiv

[19] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. | DOI | MR | Zbl

[20] X. Feng and A. Prohl, Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows. Numer. Math. 94 (2003) 33–65. | DOI | MR | Zbl

[21] A.V. Fursikov, M.D. Gunzburger and L.S. Hou, Boundary value problems and optimal boundary control for the Navier–Stokes system: the two-dimensional case. SIAM J. Control Optim. 36 (1998) 852–894. | DOI | MR | Zbl

[22] H. Garcke, M. Hinze and C. Kahle, A stable and linear time discretization for a thermodynamically consistent model for two-phase incompressible flow. Appl. Numer. Math. 99 (2016) 151–171. | DOI | MR | Zbl

[23] J. Geng and Z. Shen, The Neumann problem and Helmholtz decomposition in convex domains. J. Funct. Anal. 259 (2010) 2147–2164 | DOI | MR | Zbl

[24] V. Girault and P.A. Raviart, Finite Element Methods for Navier–Stokes Equations, Vol. 5 of Springer Series in Computational Mathematics. Springer (1986). | DOI | MR | Zbl

[25] G. Grün, On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities. SIAM J. Numer. Anal. 51 (2013) 3036–3061. | DOI | MR | Zbl

[26] G. Grün and F. Klingbeil, Two-phase flow with mass density contrast: stable schemes for a thermodynamic consistent and frame indifferent diffuse interface model. J. Comput. Phys. 257(A) (2014) 708–725. | DOI | MR | Zbl

[27] G. Grün, F. Guillén-Gonzáles and S. Metzger, On fully decoupled convergent schemes for diffuse interface models for two-phase flow with general mass densities. Commun. Comput. Phys. 19 (2016) 1473–1502. | DOI | MR | Zbl

[28] F. Guillén-Gonzáles and G. Tierra, Splitting schemes for a Navier–Stokes–Cahn–Hilliard model for two fluids with different densities. J. Comput. Math. 32 (2014) 643–664. | DOI | MR | Zbl

[29] M.D. Gunzburger and S. Maservisi, The velocity tracking problem for Navier–Stokes flows with boundary control. SIAM J. Control Optim. 39 (2000) 594–634. | DOI | MR | Zbl

[30] Z. Guo, P. Lin and J.S. Lowengrub, A numerical method for the quasi-incompressible Cahn–Hilliard–Navier–Stokes equations for variable density flows with a discrete energy law. J. Comput. Phys. 276 (2014) 486–507. | DOI | MR | Zbl

[31] GSL–GNU Scientific Library, v1.16. Available at http://www.gnu.org/software/gsl/ (2013).

[32] M. Hintermüller and D. Wegner, Distributed optimal control of the Cahn–Hilliard system including the case of a double-obstacle homogeneous free energy density. SIAM J. Control Optim. 50 (2012) 388–418. | DOI | MR | Zbl

[33] M. Hintermüller and D. Wegner, Optimal control of a semidiscrete Cahn–Hilliard Navier–Stokes system. SIAM J. Control Optim. 52 (2014) 747–772. | DOI | MR | Zbl

[34] M. Hintermüller, M. Hinze and M.H. Tber, An adaptive finite element Moreau–Yosida-based solver for a non-smooth Cahn–Hilliard problem. Optim. Methods Softw. 25 (2011) 777–811. | DOI | MR | Zbl

[35] M. Hintermüller, M. Hinze, C. Kahle and T. Keil, A goal-oriented dual-weighted adaptive finite element approach for the optimal control of a nonsmooth Cahn–Hilliard–Navier–Stokes system. Hamburger Beiträge zur Angewandten Mathematik 2016-25 (2016). | MR | Zbl

[36] M. Hintermüller, T. Keil and D. Wegner, Optimal control of a semidiscrete Cahn–Hilliard–Navier–Stokes system with nonmatched fluid densities. SIAM J. Control Optim. 55 (2017) 1954–1989. | DOI | MR | Zbl

[37] M. Hinze, A variational discretization concept in control constrained optimization: the linear quadratic case. Comput.Optim. Appl. 30 (2005) 45–61. | DOI | MR | Zbl

[38] M. Hinze, Instantaneous closed loop control of the Navier–Stokes system. SIAM J. Control Optim. 44 (2005) 564–583. | DOI | MR | Zbl

[39] M. Hinze and C. Kahle, Model predictive control of variable density multiphase flows governed by diffuse interface models, in Vol. 1 of Proceedings of the first IFAC Workshop on Control of Systems Modeled by Partial Differential Equations (2013) 127–132.

[40] M. Hinze and K. Kunisch, Second order methods for boundary control of the instationary Navier–Stokes system. Z. Angew. Math. Mech. 84 (2004) 171–187. | DOI | MR | Zbl

[41] M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE constraints, Vol. 23 of Mathematical Modelling: Theory and Applications. Springer (2009). | MR | Zbl

[42] S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan et al., Quantitative benchmark computations of two-dimensional bubble dynamics. Int. J. Num. Methods Fluids 60 (2009) 1259–1288. | DOI | MR | Zbl

[43] C. Kahle, Instantaneous control of two-phase flow with different densities. Oberwolfach Reports. In Vol. 10 of Chapter: Interfaces and Free Boundaries: Analysis, Control and Simulation (2013) 898–901.

[44] C. Kahle, Simulation and Control of Two-Phase Flow Using Diffuse-Interface Models. Ph.D. thesis, University of Hamburg (2014).

[45] C. Kahle, An L bound for the Cahn–Hilliard equation with relaxed non-smooth free energy density. Int. J. Numer. Anal. Model. 14 (2017) 243–254. | MR | Zbl

[46] D. Kay, V. Styles and R. Welford, Finite element approximation of a Cahn–Hilliard–Navier–Stokes system. Interfaces Free Bound. 10 (2008) 15–43. | DOI | MR | Zbl

[47] A. Logg, K.-A. Mardal and G. Wells, editors. Automated Solution of Differential Equations by the Finite Element Method – The FEniCS Book, Vol. 84 of Lecture Notes in Computational Science and Engineering. Springer (2012). | DOI | MR | Zbl

[48] R. Nürnberg and E.J.W. Tucker, Finite element approximation of a phase field model arising in nanostructure patterning. Numer. Methods Partial Differ. Equ. 31 (2015) 1890–1924. | DOI | MR | Zbl

[49] Y. Oono and S. Puri, Study of phase-separation dynamics by use of cell dynamical systems. I. Modeling. Phys. Rev. A 38 (1988) 434–463. | DOI

[50] A. Schmidt and K.G. Siebert, Design of adaptive finite element software: the finite element toolbox ALBERTA, Vol. 42 of Lecture Notes in Computational Science and Engineering. Springer (2005). | MR | Zbl

[51] R. Temam, Navier–Stokes Equations – Theory and Numerical Analysis. North-Holland Publishing Company, Amsterdam, New York, Oxford (1977). | MR | Zbl

Cité par Sources :