Strong stability of linear parabolic time-optimal control problems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 1.

Sufficient conditions for strong stability of a class of linear time-optimal control problems with general convex terminal set are derived. Strong stability in turn guarantees qualified optimality conditions. The theory is based on a characterization of weak invariance of the target set under the controlled equation. An appropriate strengthening of the resulting Hamiltonian condition ensures strong stability and yields a priori bounds on the size of multipliers, independent of, e.g., the initial point or the running cost. In particular, the results are applied to the control of the heat equation into an L2-ball around a desired state.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017079
Classification : 49K20, 49K40, 58J70
Mots-clés : Time-optimal control, weak invariance, strong stability, optimality conditions, perturbation analysis
Bonifacius, Lucas 1 ; Pieper, Konstantin 1

1
@article{COCV_2019__25__A1_0,
     author = {Bonifacius, Lucas and Pieper, Konstantin},
     title = {Strong stability of linear parabolic time-optimal control problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2017079},
     mrnumber = {3943359},
     zbl = {1437.49033},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2017079/}
}
TY  - JOUR
AU  - Bonifacius, Lucas
AU  - Pieper, Konstantin
TI  - Strong stability of linear parabolic time-optimal control problems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2017079/
DO  - 10.1051/cocv/2017079
LA  - en
ID  - COCV_2019__25__A1_0
ER  - 
%0 Journal Article
%A Bonifacius, Lucas
%A Pieper, Konstantin
%T Strong stability of linear parabolic time-optimal control problems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2017079/
%R 10.1051/cocv/2017079
%G en
%F COCV_2019__25__A1_0
Bonifacius, Lucas; Pieper, Konstantin. Strong stability of linear parabolic time-optimal control problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 1. doi : 10.1051/cocv/2017079. http://www.numdam.org/articles/10.1051/cocv/2017079/

[1] K. Altmann, S. Stingelin, and F. Tröltzsch, On some optimal control problems for electrical circuits. Int. J. Circuit Theor. Appl. 42 (2014) 808–830. | DOI

[2] H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I: Abstract Linear Theory. Vol. 89 of Monographs in Mathematics. Birkhäuser Boston (1995). | MR | Zbl

[3] M. Badra and T. Takahashi, On the Fattorini criterion for approximate controllability and stabilizability of parabolic systems. ESAIM: COCV 20 (2014) 924–956. | Numdam | MR | Zbl

[4] V. Barbu, Analysis and Control of Nonlinear Infinite-Dimensional Systems. Vol. 190 of Mathematics in Science and Engineering. Academic Press, Boston, MA (1993). | MR | Zbl

[5] V. Barbu, The time optimal control of Navier-Stokes equations. Syst. Control Lett. 30 (1997) 93–100. | DOI | MR | Zbl

[6] H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. With a foreword by Hédy Attouch. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2011). | MR | Zbl

[7] F. Bonnans and E. Casas, An extension of Pontryagin’s principle for state-constrained optimal control of semilinear elliptic equations and variational inequalities. SIAM J. Control Optim. 33 (1995) 274–298. | DOI | MR | Zbl

[8] J.F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. Springer Series in Operations Research. Springer-Verlag, New York (2000). | MR | Zbl

[9] J.V. Burke, Calmness and exact penalization. SIAM J. Control Optim. 29 (1991) 493–497. | DOI | MR | Zbl

[10] O. Cârjă, The minimal time function in infinite dimensions. SIAM J. Control Optim. 31 (1993) 1103–1114. | DOI | MR | Zbl

[11] F.H. Clarke, A new approach to Lagrange multipliers. Math. Oper. Res. 1 (1976) 165–174. | DOI | MR | Zbl

[12] F.H. Clarke, Functional Analysis, Calculus of Variations and Optimal Control. Vol. 264 of Graduate Texts in Mathematics. Springer, London (2013). | MR | Zbl

[13] F.H. Clarke, L. Rifford, and R.J. Stern, Feedback in state constrained optimal control. ESAIM: COCV 7 (2002) 97–133. | Numdam | MR | Zbl

[14] J. Daafouz, M. Tucsnak, and J. Valein, Nonlinear control of a coupled PDE/ODE system modeling a switched power converter with a transmission line. Syst. Control Lett. 70 (2014) 92–99. | DOI | MR | Zbl

[15] R. Dautray and J.-L, Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5 of Evolution Problems I. With the collaboration of Michel Artola, Michel Cessenat and Hélène Lanchon, Translated from the French by Alan Craig. Springer-Verlag, Berlin (1992). | MR | Zbl

[16] H.O. Fattorini, Infinite Dimensional Linear Control Systems: The Time Optimal and Norm Optimal Problems. Vol. 201 of North-Holland Mathematics Studies. Elsevier Science B.V., Amsterdam (2005). | MR | Zbl

[17] E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: the linear case. Adv. Differ. Equ. 5 (2000) 465–514. | MR | Zbl

[18] A.V. Fursikov, Stabilizability of a quasi-linear parabolic equation by means of a boundary control with feedback. Sbornik: Mathematics 192 (2001) 593. | DOI | MR | Zbl

[19] F. Gozzi and P. Loreti, Regularity of the minimum time function and minimum energy problems: the linear case. SIAM J. Control Optim. 37 (1999) 1195–1221. | DOI | MR | Zbl

[20] R. Haller-Dintelmann and J. Rehberg, Maximal parabolic regularity for divergence operators including mixed boundary conditions. J. Differ. Equ. 247 (2009) 1354–1396. | DOI | MR | Zbl

[21] K. Ito and F. Kappel, Evolution Equations and Approximations. Vol. 61 of Series on Advances in Mathematics for Applied Sciences.  World Scientific Publishing Co. (2002). | MR | Zbl

[22] K. Ito and K. Kunisch, Semismooth Newton methods for time-optimal control for a class of ODEs. SIAM J. Control Optim. 48 (2010) 3997–4013. | MR | Zbl

[23] K. Kunisch, K. Pieper, and A. Rund, Time optimal control for a reaction diffusion system arising in cardiac electrophysiology – a monolithic approach. ESAIM: M2AN 50 (2016) 381–414. | DOI | Numdam | MR | Zbl

[24] K. Kunisch and D. Wachsmuth, On time optimal control of the wave equation, its regularization and optimality system. ESAIM: COCV 19 (2013) 317–336. | Numdam | MR | Zbl

[25] K. Kunisch and L. Wang, Time optimal control of the heat equation with pointwise control constraints. ESAIM: COCV 19 (2013) 460–485. | Numdam | MR | Zbl

[26] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories I: Abstract Parabolic Systems. Vol. 74 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2000). | MR | Zbl

[27] X.J. Li and J.M. Yong, Optimal Control Theory for Infinite-Dimensional Systems. Systems & Control: Foundations & Applications, Birkhäuser Boston, (1995). | MR | Zbl

[28] J.-L. Lions, Quelques Méthodes de résolution des Problèmes aux Limites Non Linéaires. Dunod, Gauthier-Villars, Paris (1969). | MR | Zbl

[29] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Translated from the French by S.K. Mitter. Die Grundlehren der mathematischen Wissenschaften, Band 170. Springer-Verlag, New York, Berlin (1971). | MR | Zbl

[30] J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band. Springer-Verlag, New York, Heidelberg (1972) 181 | MR | Zbl

[31] S. Micu, I. Roventa, and M. Tucsnak, Time optimal boundary controls for the heat equation. J. Funct. Anal. 263 (2012) 25–49. | DOI | MR | Zbl

[32] E.M. Ouhabaz, Analysis of Heat Equations on Domains. Vol. 31 of London Mathematical Society Monographs Series. Princeton University Press, Princeton, NJ (2005). | MR | Zbl

[33] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Vol. 44 of Applied Mathematical Sciences. Springer-Verlag, New York (1983). | MR | Zbl

[34] M.D. Perlman, Jensen’s inequality for a convex vector-valued function on an infinite-dimensional space. J. Multivar. Anal. 4 (1974) 52–65. | DOI | MR | Zbl

[35] J.P. Raymond and H. Zidani, Pontryagin’s principle for time-optimal problems. J. Optim. Theory Appl. 101 (1999) 375–402. | DOI | MR | Zbl

[36] R.T. Rockafellar and R.J.-B. Wets, Variational Analysis. Vol. 317 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (1998). | DOI | MR | Zbl

[37] L. Rosier, A survey of controllability and stabilization results for partial differential equations. J. Eur. Syst. Autom. 41 (2007) 365.

[38] E.J.P.G. Schmidt and R.J. Stern, Invariance theory for infinite-dimensional linear control systems. Appl. Math. Optim. 6 (1980) 113–122. | DOI | MR | Zbl

[39] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. Vol. 18 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, New York (1978). | MR | Zbl

[40] M. Tucsnak, G. Wang, and C.-T. Wu, Perturbations of time optimal control problems for a class of abstract parabolic systems. SIAM J. Control Optim. 54 (2016) 2965–2991. | DOI | MR | Zbl

[41] G. Wang and G. Zheng, An approach to the optimal time for a time optimal control problem of an internally controlled heat equation. SIAM J. Control Optim. 50 (2012) 601–628. | DOI | MR | Zbl

[42] G. Wang and E. Zuazua, On the equivalence of minimal time and minimal norm controls for internally controlled heat equations. SIAM J. Control Optim. 50 (2012) 2938–2958. | DOI | MR | Zbl

[43] H. Yu, Approximation of time optimal controls for heat equations with perturbations in the system potential. SIAM J. Control Optim. 52 (2014) 1663–1692. | DOI | MR | Zbl

[44] E. Zeidler, Nonlinear Functional Analysis and its Applications I: Fixed-Point Theorems. Translated from the German by Peter R. Wadsack. Springer-Verlag, New York (1986). | MR | Zbl

[45] E. Zuazua, Controllability and observability of partial differential equations: some results and open problems, in Vol. III of Handbook of Differential Equations: Evolutionary Equations. Elsevier, North Holland, Amsterdam (2007). | MR | Zbl

Cité par Sources :