A discrete-time optimal filtering approach for non-linear systems as a stable discretization of the Mortensen observer
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1815-1847.

In this work, we seek exact formulations of the optimal estimator and filter for a non-linear framework, as the Kalman filter is for a linear framework. The solution is well established with the Mortensen filter in a continuous-time setting, but we seek here its counterpart in a discrete-time context. We demonstrate that it is possible to pursue at the discrete-time level an exact dynamic programming strategy and we find an optimal estimator combining a prediction step using the model and a correction step using the data. This optimal estimator reduces to the discrete-time Kalman estimator when the operators are in fact linear. Furthermore, the strategy that consists of discretizing the least square criterion and then finding the exact estimator at the discrete level allows to determine a new time-scheme for the Mortensen filter which is proven to be consistent and unconditionally stable, with also a consistent and stable discretization of the underlying Hamilton-Jacobi-Bellman equation.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017077
Classification : 34K35, 93E24, 93B52, 49J21, 49L20
Mots-clés : Deterministic observer, optimal filtering, time-discrete non-linear systems, Hamilton-Jacobi-Bellman
Moireau, P. 1

1
@article{COCV_2018__24_4_1815_0,
     author = {Moireau, P.},
     title = {A discrete-time optimal filtering approach for non-linear systems as a stable discretization of the {Mortensen} observer},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1815--1847},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {4},
     year = {2018},
     doi = {10.1051/cocv/2017077},
     zbl = {1414.93192},
     mrnumber = {3922444},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2017077/}
}
TY  - JOUR
AU  - Moireau, P.
TI  - A discrete-time optimal filtering approach for non-linear systems as a stable discretization of the Mortensen observer
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1815
EP  - 1847
VL  - 24
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2017077/
DO  - 10.1051/cocv/2017077
LA  - en
ID  - COCV_2018__24_4_1815_0
ER  - 
%0 Journal Article
%A Moireau, P.
%T A discrete-time optimal filtering approach for non-linear systems as a stable discretization of the Mortensen observer
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1815-1847
%V 24
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2017077/
%R 10.1051/cocv/2017077
%G en
%F COCV_2018__24_4_1815_0
Moireau, P. A discrete-time optimal filtering approach for non-linear systems as a stable discretization of the Mortensen observer. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1815-1847. doi : 10.1051/cocv/2017077. http://www.numdam.org/articles/10.1051/cocv/2017077/

[1] B.D.O. Anderson and J.B. Moore, Detectability and stabilizability of time-varying discrete-time linear systems. SIAM J. Control Optim. 19 (1981) 20–32. | DOI | MR | Zbl

[2] J.S. Baras and A. Bensoussan, On Observer Problems for Systems Governed by Partial Differential Equations. Technical Report. Maryland Univ., College Park (1987). | DOI

[3] J.S. Baras, A. Bensoussan and M.R. James, Dynamic observers as asymptotic limits of recursive filters: special cases. SIAM J. Appl. Math. 48 (1988) 1147–1158. | DOI | MR | Zbl

[4] J.S. Baras and A. Kurzhanski, Nonlinear Filtering: The Set-Membership (Bounding) and the H8 Techniques. Technical Report TR 1995-40, ISR (1995).

[5] R.E. Bellman, Dynamic Programming. Princeton University Press (1957). | MR | Zbl

[6] A. Bensoussan, Filtrage Optimal des Systèmes Linéaires. Dunod (1971). | Zbl

[7] A. Bensoussan, Stochastic Control of Partially Observable Systems. Cambridge University Press, Cambridge (1992). | DOI | MR | Zbl

[8] A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and Control of Infinite-Dimensional Systems. Vol. II of Systems & Control: Foundations & Applications. Birkhäuser Boston Inc., Boston, MA (1993). | MR | Zbl

[9] D.P. Bertsekas, Dynamics Programming and Optimal Control. 3rd edn. Athena Scientific, Vol. 1 (2005). | MR | Zbl

[10] J. Blum, F.-X. Le Dimet and I.M. Navon, Data assimilation for geophysical fluids. Comput. Methods Atmos. Ocean 14 (2009) 385–441. | MR

[11] O. Bokanowski, J. Garcke, M. Griebel and I. Klompmaker, An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations. J. Sci. Comput. 55 (2013) 575–605. | DOI | MR | Zbl

[12] H.-J. Bungartz and M. Griebel, Sparse grids. Acta Numer. 13 (2004) 147–269. | MR | Zbl

[13] L. Cesari, Existence theorems for weak and usual optimal solutions in Lagrange problems with unilateral constraints. II. Existence theorems for weak solutions. Trans. Am. Math. Soc. 124 (1966) 413–430. | DOI | MR | Zbl

[14] D. Chapelle, M. Fragu, V. Mallet and P. Moireau, Fundamental principles of data assimilation underlying the verdandi library: applications to biophysical model personalization within euheart. Med. Biol. Eng. Comput. 51 (2012) 1221–1233. | DOI

[15] D. Chapelle, A. Gariah, P. Moireau and J. Sainte-Marie, A Galerkin strategy with Proper Orthogonal Decomposition for parameter-dependent problems – analysis, assessments and applications to parameter estimation. ESAIM: M2AN 47 (2013) 1821–1843. | DOI | Numdam | MR | Zbl

[16] G. Chavent, Nonlinear Least Squares for Inverse Problems. Springer (2010). | DOI | MR | Zbl

[17] Z. Chen, Bayesian filtering: From Kalman filters to particle filters, and beyond. Statistics 182 (2003) 1–69.

[18] N. Cîndea, A. Imperiale and P. Moireau, Data assimilation of time under-sampled measurements using observers, the wave-like equation example. ESAIM: COCV 21 (2015) 635–669. | Numdam | MR | Zbl

[19] H. Cox, On the estimation of state variables and parameters for noisy dynamic systems. IEEE Trans. Autom. Control (1964). | MR

[20] A.L. Dontchev, Discrete approximations in optimal control, in Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control. Springer, New York, NY (1996) 59–80. | DOI | MR | Zbl

[21] W.H. Fleming, Deterministic nonlinear filtering. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1997) 435–454. | Numdam | MR | Zbl

[22] W.H. Fleming and W.M. Mceneaney, A max-plus-based algorithm for a Hamilton–Jacobi–Bellman equation of nonlinear filtering. SIAM J. Control Optim. 38 (2000) 683–710. | DOI | MR | Zbl

[23] W.H. Fleming and R.W. Rischel, Deterministic and Stochastic Optimal Control. Springer-Verlag (1975). | DOI | MR | Zbl

[24] O. Hijab,Asymptotic nonlinear filtering and large deviations. Adv. Filter. Optim. Stoch. Control (1982) 170–176. | DOI | MR | Zbl

[25] M.R. James and J.S. Baras, Nonlinear filtering and large deviations: a PDE-control theoretic approach. Stochastics 23 (1988) 391–412. | DOI | MR | Zbl

[26] S.J. Julier and J.K. Uhlmann, New extension of the Kalman filter to nonlinear systems. Proc. SPIE 3068 (1997) 182–193. | DOI

[27] T. Kailath, A.H. Sayed and B. Hassibi, Linear Estimation. Prentice Hall, New Jersey, Vol. 1 (2000).

[28] R.E. Kalman, Contributions to the theory of optimal control. Bol. Soc. Mat. Mexicana 5 (1960) 102–119. | MR | Zbl

[29] R.E. Kalman, A new approach to linear filtering and prediction problems. J. Basic Eng. 82 (1960) 35–45. | DOI | MR

[30] R.E. Kalman, Mathematical description of linear dynamical systems. J. SIAM Control Ser. A 1 (1963) 152–192. | MR | Zbl

[31] R.E. Kalman and R. Bucy, New results in linear filtering and prediction theory. Trans. ASME J. Basic Eng. 83 (1961) 95–108. | DOI | MR

[32] A.J. Krener, A Lyapunov theory of nonlinear observers, in G.G Yin and Q. Zhang eds. Stochastic Analysis, Control, Optimization and Applications. Springer (1998) 409–420. | MR | Zbl

[33] A.J. Krener, The convergence of the minimum energy estimator, in New Trends in Nonlinear Dynamics and Control, and their Applications. Springer, Berlin (2003). | MR | Zbl

[34] A.J. Krener and A. Duarte, A hybrid computational approach to nonlinear estimation, in Proceedings of the 35th IEEE Decision and Control, 1996 (1996) 1815–1819. | DOI

[35] K. Kunisch, S. Volkwein and L. Xie, HJB-POD-based feedback design for the optimal control of evolution problems. SIAM J. Appl. Dyn. Syst. 3 (2004) 701–722. | DOI | MR | Zbl

[36] H.J. Kushner, Dynamical equations for optimal nonlinear filtering. J. Differ. Equ. 3 (1967) 179–190. | DOI | MR | Zbl

[37] F.-X. Le Dimet and O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A 38 (2010) 97–110. | DOI

[38] P. Moireau and D. Chapelle, Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems. ESAIM: COCV 17 (2011) 380–405. | Numdam | MR | Zbl

[39] R.E. Mortensen, Maximum-likelihood recursive nonlinear filtering. J. Optim. Theory Appl. 2 (1968) 386–394. | DOI | MR | Zbl

[40] I.M. Navon, Data assimilation for numerical weather prediction: a review, in S.K. Park and L. Xu eds. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications. Springer, Berlin, Heidelberg (2009). | DOI

[41] Y. Peng, X. Xiang and Y. Jiang, Nonlinear dynamic systems and optimal control problems on time scales. ESAIM: COCV 17 (2010) 654–681. | Numdam | MR | Zbl

[42] D.T. Pham, J. Verron and M.C. Roubaud, A singular evolutive extended Kalman filter for data assimilation in oceanography. J. Mar. Syst. 16 (1998) 323–340. | DOI

[43] D. Simon, Optimal State Estimation: Kalman, H, and Nonlinear Approaches. Wiley-Interscience (2006). | DOI

[44] M. Vidyasagar, Nonlinear Systems Analysis. Prentice-Hall Internaltional Editions, Englewood Cliffs, NJ (1993). | Zbl

Cité par Sources :