We study the minimum problem for non sequentially weakly lower semicontinuos fucntionals of the form
Mots-clés : Non semicontinuous functional, minimum problem, Γ-convergence
@article{COCV_2018__24_4_1333_0, author = {Zagatti, Sandro}, title = {Diagonal non-semicontinuous variational problems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1333--1343}, publisher = {EDP-Sciences}, volume = {24}, number = {4}, year = {2018}, doi = {10.1051/cocv/2017068}, mrnumber = {3922447}, zbl = {1429.49018}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv/2017068/} }
TY - JOUR AU - Zagatti, Sandro TI - Diagonal non-semicontinuous variational problems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 1333 EP - 1343 VL - 24 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2017068/ DO - 10.1051/cocv/2017068 LA - en ID - COCV_2018__24_4_1333_0 ER -
%0 Journal Article %A Zagatti, Sandro %T Diagonal non-semicontinuous variational problems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 1333-1343 %V 24 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2017068/ %R 10.1051/cocv/2017068 %G en %F COCV_2018__24_4_1333_0
Zagatti, Sandro. Diagonal non-semicontinuous variational problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1333-1343. doi : 10.1051/cocv/2017068. https://www.numdam.org/articles/10.1051/cocv/2017068/
[1] Г-Limits of Integral Functionals. J. Analyse Math. 37 (1980) 145–185 | DOI | MR | Zbl
and[2] On a classical problem of the calculus of variations without convexity conditions. Ann. Inst. Henri Poincaré Anal. Non Lin. 7 (1990) 97–106 | DOI | Numdam | MR | Zbl
, ,[3] An existence theorem without convexity conditions. SIAM J. Control 12 (1974) 319–331 | DOI | MR | Zbl
,[4] Optimization – Theory and Applications. Springer-Verlag, New York (1983) | DOI | MR | Zbl
,[5] Non convex problems of the calculus of variations and differential inclusions, in Handbook of Differ. Equ. 2 Elsevier/North Holland (2005) 57–126 | MR | Zbl
,[6] An introduction to Г-convergence. Birkhäuser, Boston (1993) | DOI | MR | Zbl
[7] Metodi diretti nel calcolo delle variazioni, Unione Matematica Italiana, Bologna (1993) | MR | Zbl
,[8] Non convex integrals of the calculus of variations, Methods of nonconvex analysis, edited by . In Vol. 1446 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1990) 16–57 | DOI | MR | Zbl
,[9] On the minimum problem for non convex scalar functionals. SIAM J. Math. Anal. 37 (2005) 982–995 | DOI | MR | Zbl
,[10] Uniqueness and continuous dependence on boundary data for integro-extremal minimizer of the functional of the gradient. J. Convex Anal. 14 (2007) 705–727 | MR | Zbl
,[11] Solutions of Hamilton-Jacobi equations and minimizers of non quasiconvex functionals. J. Math. Anal. Appl. 335 (2007) 1143–1160 | DOI | MR | Zbl
,[12] Minimizers of non convex scalar functionals and viscosity solutions of Hamilton-Jacobi equations. Calc. Var. PDE’s 31 (2008) 511–519 | DOI | MR | Zbl
,[13] Qualitative properties of integro-extremal minimizers of non-homogeneous scalar functionals. Int. J. Pure Appl. Math. 51(2009) 103–116 | MR | Zbl
,[14] Minimization of non quasiconvex functionals by integro-extremization method. Discrete Contin. Dyn. Syst. , Ser. A 21 (2008) 625–641 | DOI | MR | Zbl
,Cité par Sources :