Diagonal non-semicontinuous variational problems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1333-1343.

We study the minimum problem for non sequentially weakly lower semicontinuos fucntionals of the form ( u ) = I f ( x , u ( x ) , u ' ( x ) ) d x , defined on Sobolev spaces, where the integrand f : I × m × m is assumed to be non convex in the last variable. Denoting by f ¯ the lower convex envelope of f with respect to the last variable, we prove the existence of minimum points of assuming that the application p f ¯ ( · , p , · ) is separately monotone with respect to each component p i of the vector p and that the Hessian matrix of the application ξ f ¯ ( · , · , ξ ) is diagonal. In the special case of functionals of sum type represented by integrands of the form f ( x , p , ξ ) = g ( x , ξ ) + h ( x , p ) , we assume that the separate monotonicity of the map p h ( , p ) , holds true in a neighbourhood of the (unique) minimizer of the relaxed functional and not necessarily on its whole domain.

DOI : 10.1051/cocv/2017068
Classification : 46B50, 49J45
Mots-clés : Non semicontinuous functional, minimum problem, Γ-convergence
Zagatti, Sandro 1

1
@article{COCV_2018__24_4_1333_0,
     author = {Zagatti, Sandro},
     title = {Diagonal non-semicontinuous variational problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1333--1343},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {4},
     year = {2018},
     doi = {10.1051/cocv/2017068},
     mrnumber = {3922447},
     zbl = {1429.49018},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2017068/}
}
TY  - JOUR
AU  - Zagatti, Sandro
TI  - Diagonal non-semicontinuous variational problems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1333
EP  - 1343
VL  - 24
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2017068/
DO  - 10.1051/cocv/2017068
LA  - en
ID  - COCV_2018__24_4_1333_0
ER  - 
%0 Journal Article
%A Zagatti, Sandro
%T Diagonal non-semicontinuous variational problems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1333-1343
%V 24
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2017068/
%R 10.1051/cocv/2017068
%G en
%F COCV_2018__24_4_1333_0
Zagatti, Sandro. Diagonal non-semicontinuous variational problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1333-1343. doi : 10.1051/cocv/2017068. http://www.numdam.org/articles/10.1051/cocv/2017068/

[1] G. Buttazzo and G. Dal Maso Г-Limits of Integral Functionals. J. Analyse Math. 37 (1980) 145–185 | DOI | MR | Zbl

[2] A. Cellina, G. Colombo, On a classical problem of the calculus of variations without convexity conditions. Ann. Inst. Henri Poincaré Anal. Non Lin. 7 (1990) 97–106 | DOI | Numdam | MR | Zbl

[3] L. Cesari, An existence theorem without convexity conditions. SIAM J. Control 12 (1974) 319–331 | DOI | MR | Zbl

[4] L. Cesari, Optimization – Theory and Applications. Springer-Verlag, New York (1983) | DOI | MR | Zbl

[5] B. Dacorogna, Non convex problems of the calculus of variations and differential inclusions, in Handbook of Differ. Equ. 2 Elsevier/North Holland (2005) 57–126 | MR | Zbl

[6] G. Dal Maso An introduction to Г-convergence. Birkhäuser, Boston (1993) | DOI | MR | Zbl

[7] E. Giusti, Metodi diretti nel calcolo delle variazioni, Unione Matematica Italiana, Bologna (1993) | MR | Zbl

[8] P. Marcellini, Non convex integrals of the calculus of variations, Methods of nonconvex analysis, edited by A. Cellina. In Vol. 1446 of Lecture Notes in Mathematics.  Springer-Verlag, Berlin (1990) 16–57 | DOI | MR | Zbl

[9] S. Zagatti, On the minimum problem for non convex scalar functionals. SIAM J. Math. Anal. 37 (2005) 982–995 | DOI | MR | Zbl

[10] S. Zagatti, Uniqueness and continuous dependence on boundary data for integro-extremal minimizer of the functional of the gradient. J. Convex Anal. 14 (2007) 705–727 | MR | Zbl

[11] S. Zagatti, Solutions of Hamilton-Jacobi equations and minimizers of non quasiconvex functionals. J. Math. Anal. Appl. 335 (2007) 1143–1160 | DOI | MR | Zbl

[12] S. Zagatti, Minimizers of non convex scalar functionals and viscosity solutions of Hamilton-Jacobi equations. Calc. Var. PDE’s 31 (2008) 511–519 | DOI | MR | Zbl

[13] S. Zagatti, Qualitative properties of integro-extremal minimizers of non-homogeneous scalar functionals. Int. J. Pure Appl. Math. 51(2009) 103–116 | MR | Zbl

[14] S. Zagatti, Minimization of non quasiconvex functionals by integro-extremization method. Discrete Contin. Dyn. Syst. , Ser. A 21 (2008) 625–641 | DOI | MR | Zbl

Cité par Sources :