Bang-bang control of a thermostat with nonconstant cooling power
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 709-719.

A control system describing the dynamic behavior of a car thermostat is considered. The cooling power of the car’s radiator is allowed to depend on the ambient temperature. This physically natural assumption presents some challenges to mathematical investigation of the model. The existence and some properties of solutions of the control system are established.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017064
Classification : 47J22, 47H14, 47J35, 49J53
Mots clés : Evolution system, time delay, hysteresis, thermostat, bang-bang controls
Timoshin, Sergey A. 1

1
@article{COCV_2018__24_2_709_0,
     author = {Timoshin, Sergey A.},
     title = {Bang-bang control of a thermostat with nonconstant cooling power},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {709--719},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {2},
     year = {2018},
     doi = {10.1051/cocv/2017064},
     zbl = {06974825},
     mrnumber = {3816411},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2017064/}
}
TY  - JOUR
AU  - Timoshin, Sergey A.
TI  - Bang-bang control of a thermostat with nonconstant cooling power
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 709
EP  - 719
VL  - 24
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2017064/
DO  - 10.1051/cocv/2017064
LA  - en
ID  - COCV_2018__24_2_709_0
ER  - 
%0 Journal Article
%A Timoshin, Sergey A.
%T Bang-bang control of a thermostat with nonconstant cooling power
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 709-719
%V 24
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2017064/
%R 10.1051/cocv/2017064
%G en
%F COCV_2018__24_2_709_0
Timoshin, Sergey A. Bang-bang control of a thermostat with nonconstant cooling power. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 709-719. doi : 10.1051/cocv/2017064. http://www.numdam.org/articles/10.1051/cocv/2017064/

[1] H. Attouch, Variational Convergence for Functions and Operators. Pitman Adv. Publishing Program. Boston-London-Melbourne (1984) | MR | Zbl

[2] R.J. Aumann, Integrals of set-valued functions. J. Math. Anal. Appl. 12 (1965) 1–12 | DOI | MR | Zbl

[3] B. Cahlon, D. Schmidt, M. Shillor and X. Zou, Analysis of thermostat models. Eur. J. Appl. Math. 8 (1997) 437–455 | DOI | MR | Zbl

[4] Z. Denkowski, S. Migórski and N.S. Papageorgiou, An introduction to nonlinear analysis. Theory. Dordrecht: Kluwer Academic/Plenum Publishers (2003) | DOI | MR | Zbl

[5] J. Kopfová and T. Kopf, Differential equations, hysteresis, and time delay. Z. Angew. Math. Phys. 53 (2002) 676–691 | DOI | MR | Zbl

[6] H. Logemann, E.P. Ryan and I. Shvartsman, A class of differential-delay systems with hysteresis: Asymptotic behaviour of solutions. Nonl. Anal. 69 (2008) 363–391 | DOI | MR | Zbl

[7] S. Gutman, Topological equivalence in the space of integrable vector-valued functions. Proc. Am. Math. Soc. 93 (1985) 40–42 | DOI | MR | Zbl

[8] J.W. Macki, P. Nistri and P. Zecca, Mathematical models for hysteresis. SIAM Rev. 35 (1993) 94–123 | DOI | MR | Zbl

[9] U. Mosco, Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3 (1969) 510–585 | DOI | MR | Zbl

[10] S.A. Timoshin, Control system with hysteresis and delay. Syst. Control Lett. 91 (2016) 43–47 | DOI | MR | Zbl

[11] S.A. Timoshin and A.A. Tolstonogov, Existence and properties of solutions of a control system with hysteresis effect. Nonlinear Anal. 74 (2011) 4433–4447 | DOI | MR | Zbl

[12] A.A. Tolstonogov, Mosco convergence of integral functionals and its applications. Sb. Math. 200 (2009) 429–454 | DOI | MR | Zbl

[13] A.A. Tolstonogov and D.A. Tolstonogov, Lp-continuous extreme selectors of multifunctions with decomposable values: Existence theorems. Set-Valued Anal. 4 (1996) 173–203 | DOI | MR | Zbl

[14] A. Visintin, Differential Models of Hysteresis. Appl. Math. Sci. Springer Verlag, Berlin 111 (1994) | MR | Zbl

[15] X. Zou, J.A. Jordan and M. Shillor, A dynamic model for a thermostat. J. Eng. Math. 36 (1999) 291–310 | DOI | MR | Zbl

Cité par Sources :