We approximate an elliptic problem with oscillatory coefficients using a problem of the same type, but with constant coefficients. We deliberately take an engineering perspective, where the information on the oscillatory coefficients in the equation can be incomplete. A theoretical foundation of the approach in the limit of infinitely small oscillations of the coefficients is provided, using the classical theory of homogenization. We present a comprehensive study of the implementation aspects of our method, and a set of numerical tests and comparisons that show the potential practical interest of the approach. The approach detailed in this article improves on an earlier version briefly presented in [C. Le Bris, F. Legoll and K. Li, C.R. Acad. Sci. Paris, Série I 351 (2013) 265–270].
Accepté le :
DOI : 10.1051/cocv/2017061
Mots-clés : Elliptic PDEs, Oscillatory coefficients, Homogenization, Coarse-graining
@article{COCV_2018__24_4_1345_0, author = {Le Bris, Claude and Legoll, Fr\'ed\'eric and Lemaire, Simon}, title = {On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1345--1380}, publisher = {EDP-Sciences}, volume = {24}, number = {4}, year = {2018}, doi = {10.1051/cocv/2017061}, zbl = {1419.35020}, mrnumber = {3922435}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2017061/} }
TY - JOUR AU - Le Bris, Claude AU - Legoll, Frédéric AU - Lemaire, Simon TI - On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 1345 EP - 1380 VL - 24 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2017061/ DO - 10.1051/cocv/2017061 LA - en ID - COCV_2018__24_4_1345_0 ER -
%0 Journal Article %A Le Bris, Claude %A Legoll, Frédéric %A Lemaire, Simon %T On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 1345-1380 %V 24 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2017061/ %R 10.1051/cocv/2017061 %G en %F COCV_2018__24_4_1345_0
Le Bris, Claude; Legoll, Frédéric; Lemaire, Simon. On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1345-1380. doi : 10.1051/cocv/2017061. http://www.numdam.org/articles/10.1051/cocv/2017061/
[1] Boundary layer tails in periodic homogenization. ESAIM: COCV 4 (1999) 209–243 | Numdam | MR | Zbl
and ,[2] Introduction to numerical stochastic homogenization and the related computational challenges: some recent developments, Multiscale Modeling and Analysis for Materials Simulation. Edited by and . In Vol. 22 of Lecture Notes Series. Institute for Mathematical Sciences, National University of Singapore (2011) 197–272 | MR
, , , and ,[3] Asymptotic analysis for periodic structures. In Vol. 5 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York (1978) | MR | Zbl
, and[4] Une variante de la théorie de l’homogénéisation stochastique des opérateurs elliptiques (A variant of stochastic homogenization theory for elliptic operators). C.R. Acad. Sci. Paris, Série I 343 (2006) 717–724 | DOI | MR | Zbl
, and ,[5] Stochastic homogenization and random lattices. J. Math. Pures Appl. 88 (2007) 34–63 | DOI | MR | Zbl
, and ,[6] Approximation of effective coefficients in stochastic homogenization. Ann. Inst. Henri Poincaré Probab. Stat. 40 (2004) 153–165 | DOI | Numdam | MR | Zbl
and ,[7] Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media. Water Resources Res. 27 (1991) 699–708 | DOI
,[8] W.E and The Heterogeneous Multiscale Methods. Commun. Math. Sci. 1 (2003) 87–132 | DOI | MR | Zbl
,[9] Multiscale Finite Element Methods – Theory and Applications. In Vol. 4 of Surveys and Tutorials in the Applied Mathematical Sciences. Springer-Verlag, New York (2009) | MR | Zbl
and .[10] Asymptotic and numerical homogenization. Acta Numer. 17 (2008) 147–190 | DOI | MR | Zbl
and ,[11] A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169–189 | DOI | MR | Zbl
and ,[12] The variational multiscale method – a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166 (1998) 3–24 | DOI | MR | Zbl
, , and ,[13] Homogenization of Differential Operators and Integral Functionals. Springer–Verlag, Berlin Heidelberg (1994) | DOI | MR
, and ,[14] Numerical homogenization of elliptic multiscale problems by subspace decomposition. Multiscale Model. Simul. 14 (2016) 1017–1036 | DOI | MR | Zbl
and ,[15] Some numerical approaches for “weakly” random homogenization. Numerical mathematics and advanced applications. In Proc. of ENUMATH 2009, of Lect. Notes Comput. Sci. Eng. Springer (2010) | Zbl
[16] Approximation grossière d’un problème elliptique à coefficients hautement oscillants (Coarse approximation of an elliptic problem with highly oscillatory coefficients) C. R. Acad. Sci. Paris, Série I 351 (2013) 265–270 | DOI | MR | Zbl
, and ,[17] Localization of elliptic multiscale problems. Math. Comput. 83 (2014) 2583–2603 | DOI | MR | Zbl
and ,[18] Boundary value problems with rapidly oscillating random coefficients, In Proc. Colloq. on Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory 10 (1981) 835–873 | MR | Zbl
and ,[19] The general theory of homogenization – A personalized introduction. In Vol. 7 of Lect. Notes of the Unione Matematica Italiana. Springer–Verlag, Berlin Heidelberg (2010) | DOI | MR | Zbl
,Cité par Sources :